大便常规能检查出什么

大便常规能检查出什么,第1张

大便常规化验一般包括粪便性状、幽门螺杆菌检测、粪便白细胞、粪便红细胞、粪便颜色、粪寄生虫卵、粪便隐血试验(OBT)。可以了解消化道有无细菌、病毒及寄生虫感染,及早发现胃肠炎、肝病,还可作为消化道肿瘤的诊断筛查。

/iknow-pic.cdn.bcebos.com/9345d688d43f8794d0fd33eedc1b0ef41ad53aeb"target="_blank"title="点击查看大图"class="ikqb_img_alink">/iknow-pic.cdn.bcebos.com/9345d688d43f8794d0fd33eedc1b0ef41ad53aeb?x-bce-process=image%2Fresize%2Cm_lfit%2Cw_600%2Ch_800%2Climit_1%2Fquality%2Cq_85%2Fformat%2Cf_auto"esrc="https://iknow-pic.cdn.bcebos.com/9345d688d43f8794d0fd33eedc1b0ef41ad53aeb"/>

扩展资料:

一般性状:

1、黑色或柏油样:见于上消化道出血,如溃疡病出血、食道静脉曲张破裂、消化道肿瘤等。如服铁剂、铋剂或进食动物血及肝脏后粪便也可呈黑色。

2、白陶土色:见于胆道完全梗阻时或服钡餐造影后。

3、果酱色:见于阿米巴痢疾或肠套叠时。

4、红色:见于下消化道出血,如痔疮、肛裂、肠息肉、结肠癌、放射性结肠炎等,或服用番茄、红辣椒、扑蛲灵、酚酞、保泰松、利福平、阿司匹林后。

5、绿色:因肠管蠕动过快,胆绿素在肠内尚未转变为粪胆素所致,多见于婴幼儿急性腹泻及空肠弯曲菌肠炎。

6、米泔样便:常见于重症霍乱、副霍乱患者。

参考资料来源:/baike.baidu.com/item/%E5%A4%A7%E4%BE%BF%E5%B8%B8%E8%A7%84/983339?fr=aladdin"target="_blank"title="百度百科-大便常规">百度百科-大便常规

DNA中文称“脱氧核糖核酸”,英语全文:Deoxyribonucleic acid,又称去氧核糖核酸,是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。

正常情况下大便是不存在这些分子的,如果大便含有脱落的黏膜细胞、黏液、血丝等物体就会有DNA分子,就能检出该人的DNA。

扩展资料

脱氧核糖核酸

同义词 dna(脱氧核糖核酸)一般指脱氧核糖核酸

脱氧核糖核酸是分子结构复杂的有机化合物。作为染色体的一个成分而存在于细胞核内。功能为储藏遗传信息。DNA 分子巨大,由核苷酸组成。核苷酸的含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶;戊糖为脱氧核糖。

1953 年美国的沃森(James Dewey Watson)、英国的克里克与威尔金斯描述了 DNA 的结构:由一对多核苷酸链围绕一个共同的中心轴盘绕构成。糖 -磷酸链在螺旋形结构的外面,碱基朝向里面。两条多核苷酸链通过碱基间的氢键相连,形成相当稳定的组合。

分子编码中使用的遗传物质指令所有已知生物的发展和运作。

历史沿革

早期发现

最早分离出DNA的弗雷德里希·米歇尔是一名瑞士医生,他在1869年从废弃绷带里所残留的脓液中,发现一些只有显微镜可观察的物质。由于这些物质位于细胞核中,因此米歇尔称之为“核素”(nuclein)。

到了1919年,菲巴斯·利文进一步辨识出组成DNA的碱基、糖类以及磷酸核苷酸单元,他认为DNA可能是许多核苷酸经由磷酸基团的联结,而串联在一起。不过他所提出概念中,DNA长链较短,且其中的碱基是以固定顺序重复排列。1937年,威廉·阿斯特伯里完成了第一张X光绕射图,阐明了DNA结构的规律性。

1928年,弗雷德里克·格里菲斯从格里菲斯实验中发现,平滑型的肺炎球菌,能转变成为粗糙型的同种细菌,方法是将已死的平滑型与粗糙型活体混合在一起。这种现象称为“转型”。但造成此现象的因子,也就是DNA,是直到1943年,才由奥斯瓦尔德·埃弗里等人所辨识出来。1953年,阿弗雷德·赫希与玛莎·蔡斯确认了DNA的遗传功能,他们在赫希-蔡斯实验中发现,DNA是T2噬菌体的遗传物质。

组成与功能

进入20世纪时,组成蛋白质的20种氨基酸中已有12种被发现,到1940年则全部被发现。

20世纪初,德国科赛尔(1853-1927)和他的两个学生琼斯(1865-1935)和列文(1869-1940)的研究,弄清了核酸的基本化学结构,认为它是由许多核苷酸组成的大分子。核苷酸是由碱基、核糖和磷酸构成的。其中碱基有4种(腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)),核糖有两种(核糖、脱氧核糖),因此把核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。

列文急于发表他的研究成果,错误地认为4种碱基在核酸中的量是相等的,从而推导出核酸的基本结构是由4个含不同碱基的核苷酸连接成的四核苷酸,以此为基础聚合成核酸,提出了“四核苷酸假说”。这个错误的假说,对认识复杂的核酸结构起了相当大的阻碍作用,也在一定程度上影响了人们对核酸功能的认识。

1902年,德国化学家费歇尔提出氨基酸之间以肽链相连接而形成蛋白质的理论,1917年他合成了由15个甘氨酸和3个亮氨酸组成的18个肽的长链。于是,有的科学家设想,很可能是蛋白质在遗传中起主要作用。如果核酸参与遗传作用,也必然是与蛋白质连在一起的核蛋白在起作用。因此,那时生物界普遍倾向于认为蛋白质是遗传信息的载体。

到了1919年,菲巴斯·利文进一步辨识出组成DNA的碱基、糖类以及磷酸核苷酸单元,他认为DNA可能是许多核苷酸经由磷酸基团的联结,而串联在一起。不过他所提出概念中,DNA长链较短,且其中的碱基是以固定顺序重复排列。1937年,威廉·阿斯特伯里完成了第一张X光绕射图,阐明了DNA结构的规律性。

1928年,美国科学家弗雷德里克·格里菲斯(1877-1941)在实验中发现,平滑型的肺炎球菌,能转变成为粗糙型的同种细菌,方法是将已死的平滑型与粗糙型活体混合在一起。

格里菲斯用一种有荚膜、毒性强的和一种无荚膜、毒性弱的肺炎双球菌对老鼠做实验。他把有荚病菌用高温杀死后与无荚的活病菌一起注入老鼠体内,结果他发现老鼠很快发病死亡,同时他从老鼠的血液中分离出了活的有荚病菌。这说明无荚菌竟从死的有荚菌中获得了什么物质,使无荚菌转化为有荚菌。这种假设是否正确呢?

格里菲斯又在试管中做实验,发现把死了的有荚菌与活的无荚菌同时放在试管中培养,无荚菌全部变成了有荚菌,并发现使无荚菌长出蛋白质荚的就是已死的有荚菌壳中遗留的核酸(因为在加热中,荚中的核酸并没有被破坏)。格里菲斯称该核酸为"转化因子"。这种现象称为“转化”。

但这个发现没有得到广泛的承认,人们怀疑当时的技术不能除净蛋白质,残留的蛋白质起到转化的作用。造成此现象的因子,也就是DNA,是直到1943年,才由奥斯瓦尔德·埃弗里(O,Avery)等人所辨识出来。1953年,阿弗雷德·赫希与玛莎·蔡斯确认了DNA的遗传功能,他们在赫希-蔡斯实验中发现,DNA是T2噬菌体的遗传物质。

1952年,噬菌体小组主要成员赫尔希(1908一)和他的学生蔡斯用先进的同位素标记技术,做噬菌体侵染大肠杆菌的实验。他把大肠杆菌T2噬菌体的核酸标记上32P,蛋白质外壳标记上35S。

先用标记了的T2噬菌体感染大肠杆菌,然后加以分离,结果噬菌体将带35S标记的空壳留在大肠杆菌外面,只有噬菌体内部带有32P标记的核酸全部注入大肠杆菌,并在大肠杆菌内成功地进行噬菌体的繁殖。这个实验证明DNA有传递遗传信息的功能,而蛋白质则是由 DNA的指令合成的。这一结果立即为学术界所接受。

美籍德国科学家德尔布吕克(1906--1981)的噬菌体小组对艾弗里的发现坚信不移。因为他们在电子显微镜下观察到了噬菌体的形态和进入大肠杆菌的生长过程。噬菌体是以细菌细胞为寄主的一种病毒,个体微小,只有用电子显微镜才能看到它。

它像一个小蝌蚪,外部是由蛋白质组成的头膜和尾鞘,头的内部含有DNA,尾鞘上有尾丝、基片和小钩。当噬菌体侵染大肠杆菌时,先把尾部末端扎在细菌的细胞膜上,然后将它体内的DNA全部注入到细菌细胞中去,蛋白质空壳仍留在细菌细胞外面,再没有起什么作用了。

进入细菌细胞后的噬菌体DNA,就利用细菌内的物质迅速合成噬菌体的DNA和蛋白质,从而复制出许多与原噬菌体大小形状一模一样的新噬菌体,直到细菌被彻底解体,这些噬菌体才离开死了的细菌,再去侵染其他的细菌。

几乎与此同时,奥地利生物化学家查伽夫对核酸中的4种碱基的含量的重新测定取得了成果。在艾弗里工作的影响下,他认为如果不同的生物种是由于DNA的不同,则DNA的结构必定十分复杂,否则难以适应生物界的多样性。

因此,他对列文的"四核苷酸假说"产生了怀疑。在1948- 1952年4年时间内,他利用了比列文时代更精确的纸层析法分离4种碱基,用紫外线吸收光谱做定量分析,经过多次反复实验,终于得出了不同于列文的结果。

实验结果表明,在DNA大分子中嘌呤和嘧啶的总分子数量相等,其中腺嘌呤A与胸腺嘧啶T数量相等,鸟嘌呤G与胞嘧啶C数量相等。说明DNA分子中的碱基A 与T、G与C是配对存在的,从而否定了“四核苷酸假说”,并为探索DNA分子结构提供了重要的线索和依据。

克里克在1957年的一场演说中,提出了分子生物学的中心法则,预测了DNA、RNA以及蛋白质之间的关系,并阐述了“转接子假说”(即后来的tRNA)。1958年,马修·梅瑟生与富兰克林·史达在梅瑟生-史达实验中,确认了DNA的复制机制。后来克里克团队的研究显示,遗传密码是由三个碱基以不重复的方式所组成,称为密码子。这些密码子所构成的遗传密码,最后是由哈尔·葛宾·科拉纳、罗伯特·W·霍利以及马歇尔·沃伦·尼伦伯格解出。

双螺旋的发现

20世纪30年代后期,瑞典的科学家们就证明DNA是不对称的。第二次世界大战后,用电子显微镜测定出DNA分子的直径约为2nm。DNA双螺旋结构被发现后,极大地震动了学术界,启发了人们的思想。从此,人们立即以遗传学为中心开展了大量的分子生物学的研究。首先是围绕着4 种碱基怎样排列组合进行编码才能表达出20种氨基酸为中心开展实验研究。

20世纪50年代,DNA双螺旋结构被阐明,揭开了生命科学的新篇章,开创了科学技术的新时代。随后,遗传的分子机理――DNA复制、遗传密码、遗传信息传递的中心法则、作为遗传的基本单位和细胞工程蓝图的基因以及基因表达的调控相继被认识。至此,人们已完全认识到掌握所有生物命运的东西就是DNA和它所包含的基因,生物的进化过程和生命过程的不同,就是因为DNA和基因运作轨迹不同所致。

1953年4月25日,英国的《自然》杂志刊登了美国的沃森和英国的克里克在英国剑桥大学合作的研究成果:DNA双螺旋结构的分子模型,这一成果后来被誉为20世纪以来生物学方面最伟大的发现,标志着分子生物学的诞生。

沃森(1928一)在中学时代是一个极其聪明的孩子,15岁时便进入芝加哥大学学习。当时,由于一个允许较早人学的实验性教育计划,使沃森有机会从各个方面完整地攻读生物科学课程。

在大学期间,沃森在遗传学方面虽然很少有正规的训练,但自从阅读了薛定谔的《生命是什么?--活细胞的物理面貌》这本进化论的理论基础书籍,促使他去“发现基因的秘密”。他善于集思广益,博取众长,善于用他人的思想来充实自己。只要有便利的条件,不必强迫自己学习整个新领域,也能得到所需要的知识。

沃森22岁取得博士学位,然后被送往欧洲攻读博士后研究员。为了完全搞清楚一个病毒基因的化学结构,他到丹麦哥本哈根实验室学习化学。有一次他与导师一起到意大利那不勒斯参加一次生物大分子会议,有机会听英国物理生物学家莫里斯·威尔金斯(1916--2004)的演讲,看到了威尔金斯的DNAX射线衍射照片。从此,寻找解开DNA结构的钥匙的念头在沃森的头脑中索回。什么地方可以学习分析X射线衍射图呢?于是他又到英国剑桥大学卡文迪什实验室学习,在此期间沃森认识了克里克。

克里克(1916-2004)上中学时对科学充满热情,1937年毕业于伦敦大学。1946年,他阅读了埃尔温·薛定谔《生命是什么?-活细胞的物理面貌》一书,决心把物理学知识用于生物学的研究,从此对生物学产生了兴趣。1947年他重新开始了研究生的学习,1949年他同佩鲁兹一起使用X射线技术研究蛋白质分子结构,于是在此与沃森相遇了。

当时克里克比沃森大12岁,还没有取得博士学位。但他们谈得很投机,沃森感到在这里居然能找到一位懂得DNA比蛋白质更重要的人,真是三生有幸。同时沃森感到在他所接触的人当中,克里克是最聪明的一个。他们每天交谈至少几个小时,讨论学术问题。两个人互相补充,互相批评以及相互激发出对方的灵感。

他们认为解决DNA分子结构是打开遗传之谜的关键。只有借助于精确的X射线衍射资料,才能更快地弄清DNA的结构。为了搞到DNAX射线衍射资料,克里克请威尔金斯到剑桥来度周末。在交谈中威尔金斯接受了DNA结构是螺旋型的观点,还谈到他的合作者富兰克林(1920--1958,女)以及实验室的科学家们,也在苦苦思索着DNA结构模型的问题。从1951年11月至1953年4月的18个月中,沃森、克里克同威尔金斯、富兰克林之间有过几次重要的学术交往。

1951年11月,沃森听了富兰克林关于DNA结构的较详细的报告后,深受启发,具有一定晶体结构分析知识的沃森和克里克认识到,要想很快建立 DNA结构模型,只能利用别人的分析数据。他们很快就提出了一个三股螺旋的DNA结构的设想。1951年底,他们请威尔金斯和富兰克林来讨论这个模型时,富兰克林指出他们把DNA的含水量少算了一半,于是第一次设立的模型宣告失败。

有一天,沃森又到国王学院威尔金斯实验室,立刻兴奋起来、心跳也加快了,因为这种图像比以前得到的“A型”简单得多,只要稍稍看一下“B型”的X射线衍射照片,再经简单计算,就能确定DNA分子内多核苷酸链的数目了。

克里克请数学家帮助计算,结果表明嘌呤有吸引嘧啶的趋势。他们根据这一结果和从查伽夫处得到的核酸的两个嘌呤和两个嘧啶两两相等的结果,形成了碱基配对的概念。

他们苦苦地思索4种碱基的排列顺序,一次又一次地在纸上画碱基结构式,摆弄模型,一次次地提出假设,又一次次地推翻自己的假设。

有一次,沃森又在按着自己的设想摆弄模型,他把碱基移来移去寻找各种配对的可能性。突然,他发现由两个氢键连接的腺嘌呤一胸腺嘧啶对竟然和由3个氢键连接的鸟嘌呤一胞嘧啶对有着相同的形状,于是精神为之大振。

因为嘌呤的数目为什么和嘧啶数目完全相同这个谜就要被解开了。查伽夫规律也就一下子成了 DNA双螺旋结构的必然结果。因此,一条链如何作为模板合成另一条互补碱基顺序的链也就不难想象了。那么,两条链的骨架一定是方向相反的。

经过沃森和克里克紧张连续的工作,很快就完成了DNA金属模型的组装。从这模型中看到,DNA由两条核苷酸链组成,它们沿着中心轴以相反方向相互缠绕在一起,很像一座螺旋形的楼梯,两侧扶手是两条多核苷酸链的糖一磷基因交替结合的骨架,而踏板就是碱基对。由于缺乏准确的X射线资料,他们还不敢断定模型是完全正确的。

下一步的科学方法就是把根据这个模型预测出的衍射图与X射线的实验数据作一番认真的比较。他们又一次打电话请来了威尔金斯。不到两天工夫,威尔金斯和富兰克林就用X射线数据分析证实了双螺旋结构模型是正确的,并写了两篇实验报告同时发表在英国《自然》杂志上。1962年,沃森、克里克和威尔金斯获得了诺贝尔医学和生理学奖,而富兰克林因患癌症于1958年病逝而未被授予该奖。

基因工程

1967年,遗传密码全部被破解,基因从而在DNA分子水平上得到新的概念。它表明:基因实际上就是DNA大分子中的一个片段,是控制生物性状的遗传物质的功能单位和结构单位。在这个单位片段上的许多核苷酸不是任意排列的,而是以有含意的密码顺序排列的。一定结构的DNA,可以控制合成相应结构的蛋白质。

蛋白质是组成生物体的重要成分,生物体的性状主要是通过蛋白质来体现的。因此,基因对性状的控制是通过DNA控制蛋白质的合成来实现的。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等技术。

1972年,美国科学家保罗.伯格首次成功地重组了世界上第一批DNA分子,标志着DNA重组技术――基因工程作为现代生物工程的基础,成为现代生物技术和生命科学的基础与核心。

到了20世纪70年代中后期,由于出现了工程菌以及实现DNA重组和后处理都有工程化的性质,基因工程或遗传工程作为DNA重组技术的代名词被广泛使用。

到20世纪末,DNA重组技术最大的应用领域在医药方面,包括活性多肽、蛋白质和疫苗的生产,疾病发生机理、诊断和治疗,新基因的分离以及环境监测与净化。

参考资料来源百度百科-脱氧核糖核酸

能检测出来的,如果粪便带血就说明比较严重了, 它的潜伏期有9天,最好是用猫瘟检测卡(FPV)来检查。用检测卡中配套的棉签采取猫的粪便进行检查。检测结果判断:检测卡有两条线,c线和t线。如果c线和t线同时出现的话说明猫瘟阳性。如果只有c线,说明为阴性。

猫瘟热又称猫泛白细胞减少症或猫传染性肠炎。是一种高度接触性的传染病毒性疾病,主要发生于一岁以内的幼猫,临床症状表现为发热、白细胞减少、呕吐和出血性肠炎,是家猫最常见的一种非常危险的传染病。


欢迎分享,转载请注明来源:优选云

原文地址:https://54852.com/hy/573925.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-23
下一篇2023-04-23

随机推荐

  • 夏天美白的话美肤宝有什么护肤品好推荐最好是不伤肤的

    天然美白牛奶美白准备一小杯鲜奶,夏天的时候,也可以把鲜奶到放到冰箱里,敷上凉凉的,会更舒服。用蒸气蒸脸,将化妆棉吸满鲜奶,敷在脸上十五分钟左右,取下,用清水将脸上的牛奶洗净。长期坚持,可以使肤色白净均匀。芦荟美白准备三指宽二指长的面带斑点的

    2023-12-14
    29500
  • 汇源果汁退市,细数头部品牌都是怎样没落的

    前面几篇文章,笔者有探讨过“头部品牌怎样炼成”的话题,最近看到汇源果汁退市的消息,不禁感慨万千。在商业的热带雨林里,变化时刻在发生,总是有新物种向着阳光快速奔跑,同样也有强势的老物种悄然衰弱,黯然淡出丛林的中心地带。

    2023-12-14
    23100
  • 赫莲娜粉底液哪款好用_赫莲娜粉底液哪个好用

    逛街发现店铺上新了赫莲娜粉底液,并且种类产品相对较多,想知道不同款的功效适合人群。那么赫莲娜粉底液哪款好用赫莲娜粉底液哪个好用赫莲娜粉底液哪款好用赫莲娜修护菁华粉底霜 产品信息:长久持妆、滋润肌肤。有效遮盖皱纹瑕疵,使用后肌肤立显柔

    2023-12-14
    21800
  • 契欧泉的护肤品是什么档次

    契欧泉的护肤品属于中档。契欧泉化妆品取材大都来自大自然,而且不含激素,作用效果不刺激,保湿锁水,皮肤也很容易吸收,使用起来是好用的。价格很合适,普通人也能消费起。高档化妆品原材料稀缺和制作工艺复杂,价格高昂,普通人难以承受其价格。护肤品还不

    2023-12-14
    22700
  • 请问一下云南哪个牌子的按摩精油较好谢谢!!!

    问得好!云南精油,首选肯定是百草童话,你去昆明有卖本土精油的地方逛一逛,基本生产厂家都是云南西草资源开发有限公司,比如,云南红药的古云草精油,七彩云南的植物圣典品牌,万芳得,香欣源精油等等,百草童话是西草的自有品牌,昆明地区 14家专柜,百

    2023-12-14
    19700
  • 加盟化妆品连锁店

    肌肤快线肌肤快线拥有726多家分店及7,000多名员工,是中国目前发展最快的化妆品连锁店。长久以来,肌肤快线不只在品质与创新方面建立了相当声誉,更赢得顾客的高度信赖。在国内,肌肤快线是第一家以“营养肌肤”概念经营的门店,其独特而准确的市场定

    2023-12-14
    19400
  • 韩束和韩后哪个好用过的请讲

    韩束和韩后虽然名字很类似,战略方针也很雷同,但是人家其实是两个品牌,都是国产,并不是来自韩国的品牌哦!韩束韩后这对姐妹名字的品牌究竟哪一个更好一些呢?韩束和韩后哪个好韩后和韩束哪个好?理性选择才是真的好!通过了解韩后和韩束护肤品,那么,韩后

    2023-12-13
    23200
  • 化妆品研发工程师的工作内容_化妆品研发技术员工作内容

    化妆品是人们生活中的日常用品,能够有效应对人们皮肤起到有益的一面,例如去皱精华可以有效有效抹平细纹,粉底可以遮住瑕疵。因此化妆品受到了人们的广泛的使用,但化妆品还会给人们的皮肤带来副作用,影响到人们的身体健康。针对化妆品给人们带来的困扰和问

    2023-12-13
    27900
  • 欧诗漫旗下的樱尚百花萃化妆品好不好容易过敏的皮肤可以用么

    您好,很高兴为您服务!百花萃系列顾客反应效果很好哦~功效也很全面,过敏肤质不能保证哦,您可以到专柜去试用下,没问题再购买呢~谢谢您对我们的支持!希望能够帮到您!如仍有疑问,欢迎向欧诗漫知道提问!什么品牌的化妆品适合40岁到50岁的女性使用?

    2023-12-13
    17600

发表评论

登录后才能评论
保存