1946年,美国加利福尼亚州斯坦福大学布劳克和麻省哈佛大学柏塞尔等人发现了核磁共振现象,并因此荣获1952年诺贝尔物理学奖金。
1971年,美国的达曼迪恩首先将核磁共振信号用于检查癌症。1977年,英国首次获得了人手腕部的磁共振剖面图。进入80年代,由于计算机技术、电子技术和超导技术的飞速发展,核磁共振成像术才日臻完善,并在临床上广为应用。1986年,我国引进了这一技术。
核磁共振成像术,是一种揭示人体“超原子结构(质子)”相互作用的“化学图像”的技术。
要了解这一技术,就需要知道什么是核磁共振现象。
我们知道,任何原子,如果它的原子核结构中,质子或中子的数目是奇数,或两者都是奇数时,这些原子的原子核,就具有带电和环绕一定方向的自旋轴自旋的特性。这样,原子核周围就存在着一个微弱的磁场。而我们可以把每个原子都看作具有一定磁矩的“磁针”。在我们人体的组织中,有不少具有这种特性的原子,例如氢、氟、钠、磷等等。医学上核磁共振技术就是利用人体内蕴藏量最大、占人体体重70%的水中氢原子核,也就是它的质子的共振成像的。
那么,人体内的氢质子在一般情况下为什么不显出磁性呢?这是因为这些质子的自旋轴排列紊乱,没有一定的方向,彼此抵消了磁矩。
如果把人体放在一个强大的外磁场里,情况就不同了。这时,体内各个自旋带电磁的质子的磁轴,就会按外磁场的方向或反向,相互平行地重新排列,磁轴顺应外磁场方向者,处于低能状态,反之为高能状态。在此基础上,再加一个与外磁场方向相互垂直的短暂的射频脉冲,激发自旋质子获得横向磁矩,并产生推进运动,部分自旋质子吸收射频脉冲的能量,跃迁为高能状态,以至脉冲暂停,散发出电磁波信号,这一系列过程,就是磁共振现象。自旋质子从发出共振信号,到完全恢复到受射频脉冲激发前的平衡状态所需的时间称为“弛豫时间”。
人体组织器官及其疾病,在磁共振过程中,不同的组织,其磁共振信号强度不同,弛豫时间也不同,从而显示不同的图像。这种图像不仅可提供清晰的解剖细节,还能提供组织器官和病灶细胞内外的物理、化学、生物和生化等方面的诊断信息。
做核磁共振检查时,要拿掉身上各种带金属的物件,平躺在检查床上,徐徐送入“小屋”即可,它不必用任何造影剂,即可显示血管等结构。核磁共振检查对人体没有损伤,可以从任何方向作切层检查,成像有高度灵活性;分辨率高,而且10~20秒种即可成像。爆破体内的石头
我们人体的一些器官,有时会发生结石这种疾病。尿路结石最为常见,包括肾结石、输尿管结石、膀胱结石和尿道结石。对于这些结石,一般都用手术切开,取出结石,这往往给病人带来痛苦,并且常发生合并症。因此,人们一直在寻找不开刀的治疗方法。
随着高科技的广泛应用,定向爆破体内的结石已经成为现实。
磁共振指的是自旋磁共振现象。其意义上较广,包含核磁共振、电子顺磁共振或称电子自旋共振。此外,人们日常生活中常说的磁共振,是指磁共振成像,其是利用核磁共振现象制成的一类用于医学检查的成像设备。具体的图片你可以百度图片里搜索一下CT与核磁共振的区别是什么?性质一样吗?哪个更好?CT与(MRI)检查。在临床上二者各有优劣,并不是说谁比谁好比如核磁在神经系统,软组织方面的检查要比CT清晰,但CT在骨质结构检查方面比核磁更好在二者不相上下的检查范围内CT比MRI价格低,相当于1/2。 再次,核磁扫描切面的选择方式可以是任意的,就比如你切一个萝卜,你想怎么切都行但是CT只能做横断面成像,就是这个萝卜你只能从一头一片一片切到另一头去现在的多排螺旋CT因为切面层距可以很小,所以扫描后可以在计算机软体下进行三维重建,在诊断骨骼疾病(如肋骨骨折)方面比拍片直观的多。
CT(Computed Tomography),即电子计算机断层扫描,它是利用精确准直的X线束与灵敏度极高的探测器一同围绕人体的某一部位作一个接一个的断面扫描,每次扫描过程中由探测器接收穿过人体后的衰减X线资讯,再由快速模 /数(A/D)转换器将模拟量转换成数字量,然后输入电子计算机,经电子计算机高速计算,得出该层面各点的X线吸收系数值,用这些资料组成影象的矩阵。再经影象显示器将不同的资料用不同的灰度等级显示出来,这样该断面的解剖结构就可以清晰的显示在监视器上,也可利用多幅相机或镭射相机把影象记录在照片上。 MRI也就是核磁共振成像,英文全称是:nuclear magic resonance imaging, MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生讯号,用探测器检测并输入计算机,经过处理转换在萤幕上显示影象。 MR也存在不足之处。它的空间解析度不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。
磁共振成像是断层成像的一种,它利用磁共振现象从人体中获得电磁讯号,并重建出人体资讯。1946年斯坦福大学的Flelix Bloch和哈佛大学的Edward Purcell各自独立的发现了核磁共振现象。磁共振成像技术正是基于这一物理现象。1972年Paul Lauterbur 发展了一套对核磁共振讯号进行空间编码的方法,这种方法可以重建出人体影象。
磁共振成像技术与其它断层成像技术(如CT)有一些共同点,比如它们都可以显示某种物理量(如密度)在空间中的分布同时也有它自身的特色,磁共振成像可以得到任何方向的断层影象,三维体影象,甚至可以得到空间-波谱分布的四维影象。 检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。
优点:1.MRI对人体没有损伤
2.MRI能获得脑和脊髓的立体影象,不像CT那样一层一层地扫描而有可能漏掉病变部位
3.能诊断心脏病变,CT因扫描速度慢而难以胜任
4.对膀胱、直肠、子宫、 *** 、骨、关节、肌肉等部位的检查优于CT。
缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断
2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多
3.对胃肠道的病变不如内窥镜检查
4.体内留有金属物品者不宜接受MRI。
5. 危重病人不能做
6.妊娠3个月内的
7.带有心脏起搏器的
CT与核磁共振的区别是什么?哪个对人体伤害小?核磁对人体伤害小,CT属于利用X线对人体进行检查有辐射。一般来说MRI偏向对软组织的检查,CT偏向硬组织(骨组织),检查时得依据特定情况。
MRI软组织解析度高,CT有看不清的情况下可能会再做核磁。体内如果有铁磁性的金属的话就会影响MRI成像,以及如果金属在磁场影响下在体内移动也会损伤人体。。。
核磁机器多贵啊。。所以收费肯定高。。
ct是人体的平面图(切片)核磁共振是个三维透检视。如果不能确认病理位置只能核磁共振,能确认的话就ct就行。如果身体里有金属部件的话是不能作核磁共振的,想想那个巨大的磁场。。。反正ct的原理是x光反射时间的长短不同形成影像的
X光片,CT,核磁共振的区别?
成像原理不同
图象意义不同
简单说,X光是投影,2维的,CT是计算断层,3维的.核磁在3维基础上多了几种加权,图象提供资讯更多.
各有优点缺点,谁也不能完全取代谁
欢迎分享,转载请注明来源:优选云