原核延伸因子的化学本质都是蛋白质,它们的作用如下:
EF-T由EF-Tu和EF-Ts组成,当EF-T与GTP结合后可使EF-Ts与EF-Tu分离。
EF-Tu(elongation factor thermo unstable,热不稳定延伸因子)介导氨基酰-tRNA进入核糖体空出的A位。“进位”过程需消耗EF-Tu水解其复合的GTP产生的能量来完成。
EF-Ts(elongation factor thermo stable,热稳定延伸因子)是EF-Tu的鸟苷酸交换因子,能催化与EF-Tu复合的GDP转化为GTP并重新形成EF-Tu和EF-Ts的二聚体(EF-T)。
EF-G(elongation factor G,延伸因子G)具有转位酶活性,由水解GTP供能,使核糖体沿mRNA向下移动一个密码子,催化核糖体A位中的肽酰-tRNA进入P位,使A位再次空出。
(三)多肽链的延长在多肽链上每增加一个氨基酸都需要经过进位,转肽和移位三个步骤。
(1)为密码子所特定的氨基酸tRNA结合到核蛋白体的A位,称为进位。氨基酰tRNA在进位前需要有三种延长因子的作用,即,热不稳定的EF(Unstable
temperature,EF)EF-Tu,热稳定的EF(stable
temperature
EF,EF-Ts)以及依赖GTP的转位因子。EF-Tu首先与GTP结合,然后再与氨基酰tRNA结合成三元复合物,这样的三元复合物才能进入A位。此时GTP水解成GDP,EF-Tu和GDP与结合在A位上的氨基酰tRNA
①核蛋白体“给位”上携甲酰蛋氨酰 基(或肽酰)的tRNA
②核蛋白体“受体”上新进入的氨基酰tRNA
③失去甲酰蛋氨酰基(或肽酰)后,即将从核蛋白体脱落的tRNA
④接受甲酰蛋氨酰基(或肽酰)后已增长一个氨基酸残基的肽键
(2)转肽--肽键的形成(peptide
bond
formation)
在70S起始复合物形成过程中,核糖核蛋白体的P位上已结合了起始型甲酰蛋氨酸tRNA,当进位后,P位和A位上各结合了一个氨基酰tRNA,两个氨基酸之间在核糖体转肽酶作用下,P位上的氨基酸提供α-COOH基,与A位上的氨基酸的α-NH2形成肽键,从而使P位上的氨基酸连接到A位氨基酸的氨基上,这就是转肽。转肽后,在A位上形成了一个二肽酰tRNA
(3)移位(Translocation)
转肽作用发生后,氨基酸都位于A位,P位上无负荷氨基酸的tRNA就此脱落,核蛋白体沿着mRNA向3’端方向移动一组密码子,使得原来结合二肽酰tRNA的A位转变成了P位,而A位空出,可以接受下一个新的氨基酰tRNA进入,移位过程需要EF-2,GTP和Mg2+的参加(图9)。
以后,肽链上每增加一个氨基酸残基,即重复上述进位,转肽,移位的步骤,直至所需的长度,实验证明mRNA上的信息阅读是从5’端向3’端进行,而肽链的延伸是从氮基端到羧基端。所以多肽链合成的方向是N端到C端。
若果对你有用的话,希望楼主能采纳我!!!!!!!!!!!!!!!!!!!!!!!
蛋白质的生物合成中肽链延伸的方向是:从N端到C端。
肽链是生物名词,由多个氨基酸脱水缩合形成肽键(化学键)连接而成。
两个氨基酸相连为二肽,依此类推还有三肽、四肽……10个以下氨基酸组成的称寡肽(小分子肽),超过十个就是多肽,而超过五十个就被称为蛋白质。
大分子蛋白质多是组成氨基酸超过100的长肽链。肽键就是氨基酸的α-羧基与相邻的另一氨基酸的α-氨基脱水缩合的共价键,故肽链两端有自由的α-氨基或α-羧基,分别称为氨基末端或羧基末端。随着组成氨基酸单元的不同,其性质和功能有很大差异。
蛋白质:
蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。
蛋白质(protein)是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。
机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。
欢迎分享,转载请注明来源:优选云