自由度(degree of freedom, df)指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本数量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。
一般来说,自由度等于独立变量减掉其衍生量数。举例来说,变异数的定义是样本减平均值(一个由样本决定的衍生量),因此对N个随机样本而言,其自由度为N-1。
扩展资料:
在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。
统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其中包括了p-1个自变量(与截距对应的自变量是常量1)。因此该回归方程的自由度为p-1。
参考资料来源:百度百科-自由度
原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。
意义:
T检验对数据的正态性有一定的耐受能力。如果数据只是稍微偏离正态,结果仍然是稳定的。如果数据偏离正态很远,则需要考虑数据转换或采用非参数方法分析。
两个独立样本T检验的原假设为两个总体均值之间不存在显著性差异,需分两步完成:①利用F检验进行两总体方差的同质性判断;②根据方差同质性的判断,决定T统计量和自由度计算公式,进而对T检验的结果给予恰当的判定。
如果待检验的两个样本均值差异较小,那么t值也就较小,说明两样本均值不存在显著差异;相反,t值越大,说明两样本均值之间差异越显著。
SPSS将计算的t值和T分布表给出相应的显著性概率值,如果显著性概率值P小于或等于显著性水平α,则拒绝原假设,认为两总体均值之间存在显著差异;相反,显著性概率值P大于显著性水平α,则不拒绝原假设,认为两总体均值之间不存在显著差异。
扩展资料
t检验的前提条件:
无论是单样本T检验、独立样本T检验还是配对样本T检验,都有几个基本前提:
一是,T检验属于参数检验,用于检验定量数据(数字有比较意义的),若数据均为定类数据则使用非参数检验。
二是,样本数据需要服从正态或近似正态分布。
1、独立T检验(也称T检验),要求因变量需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是MannWhitney检验进行研究。
2、单样本T检验,其默认前提条件是数据需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是单样本Wilcoxon检验进行研究。
3、配对样本T检验,其默认前提条件是差值数据需要符合正态分布性,如果不满足,此时可考虑使用非参数检验,具体来讲应该是单样本Wilcoxon检验进行研究。
其实配对样本T检验与单样本T检验的原理是一模一样,无非是进行了一次数据相减(即差值)处理而已,因而其和单样本T检验保持一致。
参考资料来源:百度百科-t检验
t检验是对各回归系数的显著性所进行的检验,(--这个太不全面了,这是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等)目的:比较样本均数 所代表的未知总体均数μ和已知总体均数μ0。
计算公式:
t统计量:
自由度:v=n - 1
适用条件:
(1) 已知一个总体均数;
(2) 可得到一个样本均数及该样本标准误;
(3) 样本来自正态或近似正态总体。
例1 难产儿出生体重n=35, =3.42, S =0.40,
一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?
解:1.建立假设、确定检验水准α
H0:μ = μ0 (无效假设,null hypothesis)
H1:(备择假设,alternative hypothesis,)
双侧检验,检验水准:α=0.05
2.计算检验统计量
,v=n-1=35-1=34
3.查相应界值表,确定P值,下结论
查附表1,t0.05 / 2.34 = 2.032,t <t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义
欢迎分享,转载请注明来源:优选云