在古典几何中,圆或圆的半径是从其中心到其周边的任何线段,并且在更现代的使用中,它也是其中任何一个的长度。这个名字来自拉丁半径,意思是射线,也是一个战车的轮辐。半径的复数可以是半径(拉丁文复数)或常规英文复数半径。半径的典型缩写和数学变量名称为r。通过延伸,直径d定义为半径的两倍:d=2r。
圆的大小由半径决定,圆的位置由圆心决定。在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆,圆有无数个点,圆有无数条对称轴。圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) + (y - b) = r。其中,o是圆心,r是半径。
圆和圆的位置关系
①无公共点,一圆在另一圆之外叫外离,在之内叫内含。
②有公共点的,一圆在另一圆之外叫外切,在之内叫内切。
③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r
内切P=R-r;相交R-r<P<R+r。
欢迎分享,转载请注明来源:优选云