遗传基因是决定生物寿命及主导生物衰老过程的主要原因,其化学本质是DNA(脱氧核糖核酸)片段组成的遗传单位,绝大部分存在于细胞核内的染色体上,一小部分存在于线粒体的DNA上。
遗传基因的种类不止一种,随着实验的深入,遗传基因的种类在不断增多,就其在染色体上的位置而言,新发现的有端粒(或称端区)DNA基因,位于真核细胞的染色体末端,由DNA蛋白质构成。线粒体DNA基因存在于线粒体上。
端粒DNA基因的作用是维持线粒体的稳定,防止染色体降解。线粒体DNA基因与生物的寿命有关。染色体DNA基因主管全部生命遗传信息,它的任何变化,均将影响遗传信息的调控和表达,从而影响生物的生殖、发育和衰老。
在上述端粒DNA基因、线粒体DNA基因和染色体DNA基因之外,还有实验指出:在不同生物细胞中存在增殖基因、衰老基因、凋亡基因和长寿基因。1995年3位诺贝尔生理及医学奖金的获得者美国人刘易斯(E.B.Lewis)、韦斯昌斯(E.F.Weischaus)与德国人努斯莱-沃尔哈德(C.Nusslein-Volhard)在1995年前已鉴定了12种以上指导早期胚胎发育过程的基因。刘易斯还发现,一旦果蝇胚胎开始划分体节,基因就迅速指引这些体节变成器官。
生殖基因即主管生殖和生长的基因,生长激素(GH)即为生殖基因的表达产物。
衰老基因存在于衰老细胞内,它能使各种细胞的代谢功能减退,导致衰老。
凋亡基因存在于某些老人的凋亡细胞中。衰老基因与凋亡基因都可导致生物衰老,但本质上有所不同,因为它们的表达蛋白质不相同。衰老基因的表达蛋白质为TP60,而凋亡基因的表达蛋白质为TP30(TP为终末蛋白的缩写)。在功能上,衰老基因是按程序使细胞代谢功能降低,而凋亡基因的作用则是通过激活核酸内切酶使染色体DNA裂解,从而使神经元数目减少,结果可以导致老年痴呆症(AD)。
有人认为老年痴呆病基因为AD基因。
AD基因与凋亡基因虽然都可使神经元损失,但它们的表达蛋白质是不相同的,AD基因的表达蛋白质为β-淀粉蛋白,而凋亡基因的表达蛋白质为TP30,在本质上是有区别的。
长寿基因是近年在真菌、昆虫及哺乳动物中发现的。有人在果蝇体中发现了一种能延长果蝇寿命的因子。在果蝇衰老时,这种长寿因子的活性下降,如果将这种长寿因子转化到生殖细胞,使其长寿因子增多,即可使培育所得的新品种果蝇的寿命延长40%。新近美国洛克菲勒大学科学家发现了长寿基因APOE2。它可防止早期老年性痴呆症和心脏疾病的发生。还有作者在真菌和蠕虫体中发现超氧化物歧化酶(SOD)与长寿有关,由于SOD是蛋白质,显然是某种长寿基因的表达产物,因而进行一步提出了长寿基因的存在。
基因的结构在衰老过程中一直在变化,多种内外在因素都可使DNA裂解或突变,从而使基因结构随之改变。
两种基因杂交或用遗传工程方法使基因重组,即可得到与亲体不同的新生基因,也可用化学修饰法使基因结构改变。
基因可以复制产生与亲代相同的基因,基因的损伤也可自行修复。
基因的作用机制,我们所知的还很有限,在生殖、发育和衰老过程中,不同基因在特定的调控机构控制下对生命过程起特定的作用。在发育时期,细胞核内可能有某种启动因子使基因组内的增殖基因开放,其表达产物能使细胞增殖和发育。当生物成长后,生殖基因关闭,基因组内的衰老基因开放,其表达产物使细胞代谢失调,发生衰老。
新近有实验指出,衰老细胞产生一种能抑制DNA合成的因子,这种抑制因子存在于衰老的细胞膜上,其化学本质是一种糖蛋白。这提示我们,控制衰老遗传程序的终点是从产生抑制DNA合成这种糖蛋白质时开始的。
是什么机构在调控基因的各种活动呢?过去,生物学家形象化地设想生物体内有“生物钟”管理基因在生命衰老过程中的运转。“生物钟”的实质是什么?位于机体的什么部位?人体中有多少“生物钟”?都还是一个谜。
总而言之,目前有关基因种类、结构和作用机制与生物衰老关系的观点,不少是设想的和推论的,需要更多的实验证据才能将遗传基因与生物衰老的复杂关系揭示得更为明确。
遗传因素对人类自然寿命的影响是肯定的。根据作者本人的调查结果,长寿者其父母亦多长寿,在被调查的70岁以上的健康老人中,有80%的老人的父母终年都在70岁以上,这进一步说明遗传对人的衰老和寿命影响的直接关系。
(二)衰老的第二性原因
衰老的第二性原因指遗传基因以外的一切可引起基因结构突变、裂解、伤害及可直接或间接引起代谢失调的内、外在因素。
衰老的第一性原因是遗传基因,遗传基因主宰生物的自然寿命(天年)。事实上很多人不能活到100岁以上,达到天年,其原因是由于第二性原因伤害了遗传基因,妨碍了机体代谢功能。
衰老的第二性原因很多,可大致分为:神经精神因素、生理因素、生活习惯因素、环境因素和社会因素等五大类。每类各包含有为数不等的多种亚类(见表6-1)。
表6-1 影响衰老的第二性原因
1.精神因素对衰老的影响
精神因素是指一个人的思维情绪、精神压力和刺激等而言。对人体防衰老来说,神经系统占有头等重要位置。它调节着各个器官的活动,使各个器官之间彼此协调、合作,成为不可分割的整体,它使有机体适应周围的环境变化,保持代谢运转正常。
中枢神经系统和周围神经系统功能正常的人,他的各个器官的功能和代谢即会正常运转而不致产生疾病和早衰。中枢神经系统,特别是大脑皮层功能的慢性破坏,必将引起代谢紊乱,从而导致早衰。
关于中枢神经系统功能对衰老的影响,在巴甫洛夫实验室曾做了一个有趣的实验。他们将正常狗分为两组,给以相同的食物和照料,一组狗养成了遵守一定生活制度的条件反射,这些狗的大脑皮层没有受到负担过重的刺激,很久都是健康的。对另一组狗,加以刺激,使它们的大脑皮层处于慢性的过度兴奋状态,这些生活在不断神经紧张情况中的狗,由于大脑皮层长期负担着力所不及的任务,结果高级神经活动受到破坏,因而害起病来了。它们变得行为乖僻,形态和器官功能都发生异常,尽管饲料充足,它们依然逐渐瘦弱、掉毛,皮肤发生泡疹、疖子和不收口的溃疡,牙齿坏落,有的还发生了良性或恶性肿瘤,肌肉萎缩,行动软弱无力。它们易患病,多早死。
将这组已变得衰老的狗,改放在长期安静的环境中休息,并施以睡眠疗法或给予特殊药物治疗,使已减弱了的大脑皮层机制能得到恢复,它们的健康状况就逐渐好转,脱落的毛再复生,肌肉变得更有力,能跳过障碍物,恢复了差不多全部神经活动,变得年轻了,又活了许多年。
这两组狗的实验,证明了不良精神因素对衰老所引起的严重影响。过分刺激使大脑皮层长期处于兴奋状态,不断地担负着力所不及的过度紧张,就会引起大脑细胞萎缩,使它们在机能上不能胜任调节各器官的任务,让肌体组织和细胞工程的正常代谢遭到破坏,从而发生病变,提早出现衰老现象。人体也相同,精神过度紧张或长期处于不正常的喜、怒、哀、乐、忧、恐、惊或烦闷抑郁的情况下,就会破坏中枢神经系统的功能而引起早衰。所以,如欲防止早衰,就首先需要保护神经系统。思想开朗、乐观积极、情绪稳定和劳逸结合等都是保护神经系统的首要法宝。
我再举一位精神病专家的研究结果,进一步说明精神因素对衰老的重要影响。
一个对200多人进行了将近40年的调查报告指出:精神舒畅可使人身体健康,衰老来得较慢。能适应日常的紧张状态是保持身体健康的一个重要因素。适应能力差的人,得重病或中年夭折的可能性比适应能力好的人大得多。能妥善处理日常紧张事务的人,活到60岁时身体仍健康。但那些处于紧张状态下,觉得精神压力很大的人,他们的衰老速度就比前者快得多。在21~46岁这段时期精神最舒畅的59人中,只有3.4%的人得了慢性病或在53岁时死亡。而在48名精神压力最大的人当中,就有37.5%的人得了重病,或在53岁时死亡。那些精神适应能力最差的人分别患了心脏病、癌症、肺气肿、冠心病和高血压,有的人甚至想自杀。在思想开朗精神舒畅的那些人当中,只有一人患心脏病。这个研究,说明了精神因素对人体衰老的重要影响。
2.生理因素对衰老的影响
生物的自然衰老本身就是一种生理现象,而且是由多种生理作用共同促成的综合生理现象。人的一生是在复杂环境中度过的,遗传为每个人安排的自然衰老过程,不可能不受多种内外因素的影响,因此,每一个人的衰老过程,严格地说已经不是自然衰老的过程了。影响衰老的生理因素,是指身体中固有的遗传、神经-内分泌、酶、免疫、消化残渣和代谢废物等等因素。有关遗传因素对衰老的影响,在前面衰老的第一性原因节中已作了阐述,现在让我们看看其他生理因素对人体衰老有什么影响。
(1)神经-内分泌因素:神经系统对衰老的调节作用前面已经讲过了,现在要讲的是神经系统与内分泌在机体衰老的过程中所起的作用。人体是多器官生物,一个器官或一个系统的功能往往同时受其他器官或系统的调控,神经系统、内分泌系统和体液系统(淋巴和血液)在这方面发挥了最重要的调节作用。各个器官之间的协调主要由神经与激素来调控。人体各器官所受的刺激由神经节传递给大脑,大脑对不同刺激的反应,又由神经传到各靶器官。大脑对各器官的协调,主要通过控制下丘脑激素的分泌,再由下丘脑激素控制脑垂体各种激素的分泌,后者再控制周围激素的分泌,同围激素再控制它们各自的靶器官或组织。神经-内分泌机能不正常,例如大脑皮层功能紊乱,即会使整个内分泌系统失调,严重地妨碍生命过程。内分泌腺体分泌功能过高或过低都会影响到机体的衰老,这种例子在医学上很多,最常见的例子如甲状腺分泌过多会使患者的基础代谢增高,使其早衰;胰岛素分泌不足,会导致糖尿病也是衰老的象征之一。
(2)酶的因素:酶是机体代谢反应的催化剂,老年人的许多重要酶活力和代谢反应都随年龄增高而下降,这说明酶的活力降低。究竟是酶活力降低引起衰老,还是衰老引起酶活力降低?这一问题,颇难解答。因为这两者都是由酶推动,酶的活性降低,代谢反应必然随之降低,衰老是由代谢功能下降而引起的,由此可见,衰老有可能是由酶活力下降引起的。
(3)免疫因素:人体的免疫力随年龄增加而减退,这主要是由于胸腺随年龄增加而逐渐萎缩所引起。胸腺是位于人体上胸部的小腺体,人在14岁左右性成熟时期胸腺发育到最大限度,随后,胸腺的体积和功能即逐渐减退,到50岁时其重量只有性成熟时的15%。胸腺能分泌一种激素叫胸腺素,其中有的成分能促进具有免疫性能的T淋巴细胞的成熟。在免疫现象中还有一种现象叫自身免疫,所谓自身免疫,就是指B淋巴细胞分裂时,由于遗传物质DNA的突变而产生了不分敌我的抗体,破坏人体自身的细胞;此外,T淋巴细胞也会不分敌我地攻击人体自身的细胞。老年人的自身免疫现象的出现,是导致机体衰老的因素之一,但不是衰老的唯一因素,衰老的根本原因是遗传因素。
(4)生理“三废”因素:这是指食物在机体内经消化和代谢产生的废气、废水(尿)和废渣(粪)对衰老的影响而言。食物在肠道内消化后,其营养成分被吸收入血液,剩下的残渣如不按期排出体外,在大肠内受细菌作用腐败产生的产物有气体、酸褐素和自由基等,氨基酸产生的氨类、酮酸等也都是有毒性的。这些东西如不经体内的生理解毒机制转变为无毒物质及由呼吸系统(肺)各排泄系统(肾和皮肤)排出体外,而留在血液中,就会妨碍机体的代谢功能,从而导致衰老和多种疾病。所以人体要保持健康,必须经常保持大小便及呼吸正常以清除生理垃圾的“三废”。
(5)自由基因素:自由基是指带有未配对电子的原子、离子或化学基,通常在原子、离子或化学基上加上一个 “?”作为有关自由基的标志,例如分子氧的式子为O2,而自由基氧的式子则为?O2;同样,?H自由基的式子为?H,羟自由基的式子为O?H。
自由基带有未配对的电子,故性质活泼,具有较高的反应性,在体内能引起超氧化、交联和裂变,使细胞DNA,特别是线粒体DNA的结构遭到破坏,是生物衰老的主要原因之一。
细胞内存在的?O及O?H自由基主要来自细胞的氧化作用,在细胞氧化还原呼吸链过程中即产生?O自由基。O?H自由基主要由 ?O2直接衍生。其反应是自由基?O先经歧化反应还原成H2O2,后者在有过废金属离子存在下转化为O?H。此外,机体细胞中的水受电离辐射(X或γ射线)时也产生羟自由基O?H。
人体内存在有自由基防御系统,主要者为超氧化物歧化酶(SOD)及过氧化物酶。这两种酶可以清除自由基,老年人细胞中的抗自由基酶活性降低,自由基的危害性即显著增强。抗氧化的维生素C及E也有抗自由基的作用。特别推荐:安利维生素C和安利维生素E(VE)
(6)细胞失水:最近巴基斯坦有一位生物学家认为机体水平衡失调,亦是衰老的原因之一。水是一切酶促代谢反应必需的介质,也是保持活细胞原生质胶态的主要成分。水又是各种体液(主要为血、尿、汗)的组分,成为传递营养物、代谢产物及其他多种生理介质的传递媒介。机体如失水,或水平衡失调,代谢即会发生障碍而导致各种生理异常,发生衰老,可以说没有水就没有生命。
(7)生殖细胞丢失:鉴于生物中有种深海硬头鳟鱼在生殖期到江口上游淡水中产卵后即死亡,以及鳞翅目昆虫成虫大都是在交尾产卵后即死的事实,昆虫学家蒋松柏认为这两种生物的死亡,可能与在生殖活动中丢失了生殖细胞有关。他的论点是:衰老实际上是生物的新陈代谢发生了不可逆的衰减现象。代谢机能完善的个体是不发生衰老的,例如单细胞生物变形虫的代谢机能是全能的,它在适宜的条件下是不会衰老的;高等动物机体的组织细胞在分化中丢失了代谢的全能性,使整体代谢成为缺陷型,代谢全能的生殖细胞可以补偿机体组织细胞的缺失。当生殖细胞的丢失组织细胞的代谢得不到补偿时即易衰老。动物的衰老都发生在性成熟后,生物丢失生殖细胞的行为也是在性成熟后开始,说明这两种现象可能有因果关系。布龙(Brown Biquard)认为睾丸分泌物的消耗会引起衰老。生殖细胞丢失论与中医的保精固本,益寿延年的养生观是十分吻合的。
(8)细胞分化:细胞分化发展成不同组织时,需消耗大量能量。提供能量的反应是细胞的呼吸链反应。呼吸链产生能量时,同时释放出活性氧,后者经单电子还原产生氧自由基,引起线粒损伤,导致衰老。
3.生活习惯对衰老的影响
一般人认为日常生活琐事无足轻重,往往任其自流,不加检点,殊不知人一生的荣誉、事业、幸福和生命都与自己的行为琐事息息相关。就健康而言,如日常生活方式经常违背生理的自然规律,就容易导致机体代谢紊乱,加速衰老进程。人的生活行为种类繁多,这里只择要加以阐述。
(1)起居无常:这是指作息而言。在生命过程中,人体各种器官时时刻刻都在神经、激素及其他调控机构管理之下有节奏地运转。调控器官运转的机构是什么呢?生物学家中有人形象化地说是生物体内存在有“生物钟”,在执行调节任务。所谓生物钟,其实质就是神经、激素及其他一些有调控功能的化学物质。人体内存在的生物钟显然有主要的和次要的两类,不止一个。中枢神经系统,必然是主要的生物钟,其他各种调节机构为次要的生物钟。
人的生活作息为什么必须有规律?主要理由是,机体各器官的运转都需耗能量,当各器官的运转熟练形成习惯性的条件反射后,完成等量工作所需耗的能量就比未习惯时所需的少,器官的磨损亦较少,其代谢功能的减退也小,衰老速度也相应放慢。如果个体的生活节奏被打乱,则各器官不能适应,即会破坏机体各器官之间的协调共济,失去内在平衡,导致代谢紊乱,加快衰老。
(2)饮食无节:我们强调饮食有节,用餐定时定量,细嚼慢咽,不暴饮暴食和不贪食、偏食。定时定量使胃肠消化功能形成条件反射,正常运转,免受伤害;细嚼可帮助消化,减少胃肠负担;慢咽可预防食物误入气管;不暴饮暴食和贪食,以免打乱胃肠的习惯改正;勿偏食以收营养互补之效,避免营养缺乏。进餐时保持心情舒畅愉快,可以收到欣赏食物,促进消化,提高营养效益的效果。凡此种种,如能持之以恒,即有助于推迟衰老,祛病延年。中医的养生方法,强调饮食有节,与我们所讲的食物保健防衰是不谋而合的。
(3)营养不良:饮食是生命的物质基础,食物营养成分中的糖、脂和蛋白质三类物质既是细胞的组成成分,又是生命活动所需能量的能源,维生素和必需的矿物质元素为调节生理功能所必需。人体每人每日的膳食,必须结构合理,能满足生理需要,才能算是合理营养,才能收到保健防衰的作用。
所谓合理营养有两个内容:一个是膳食的结构必须能满足人体生理的需要,这包含组成膳食的主食副食品种,每天所吃食物的总发热量,以及膳食的发热营养素(糖、脂、蛋白质)的比例和各种维生素矿物质的含量等。另一个是膳食的烹调、保存、用餐时间、情绪和进食方式等,也都需要不违背人的生理常规。
(4)便秘、尿阻和气塞:排便、排尿和呼气是人体清除食物消化残渣、代谢废物和呼吸废气等所谓人体“三废”的主要渠道,任何一种排泄渠道发生障碍,都会产生严重疾病。经常便秘,食物残渣在大肠内被细菌作用产生有毒的腐败产物进入血流,就会引起全身性疾病;排尿不畅,使体内有毒代谢产物积存于血液中就会引起尿中毒;代谢废气二氧化碳等不及时呼出,就会引起血液酸碱平衡紊乱,产生多种代谢疾病。
(5)缺乏适当运动:流水不腐,户枢不蠹,生命在于运动。人体经常进行适当体力劳动或体育活动,则血液流通,代谢正常,免疫力强,病不能生,可益寿延年。但运动锻炼必须适合于自身的需要,有节有恒,过与不及均属有害。
(6)睡眠不足:人体各器官不停地运转,需要能量,同时各器官本身也不断在磨损,这些生命活动所需的能量需要补充,器官的损坏需要修复。补充能量需要食物营养,器官修复需要休息。睡眠是器官和整个机体休息的最好方法,因为睡眠可减少能量消耗和给器官修复伤害的时间。此外,睡眠还可增加免疫细胞(指自然杀伤细胞,简称NK细胞)。睡眠能消除疲劳,提高工作效率。如果长期睡眠不足,则不仅精神疲惫、免疫力降低,而且易患疾病,早衰早老。
(7)劳逸不均:人体须有劳有逸,精神须有张有弛,则身体运转正常,精神矍铄,工作效率高。若劳逸不均,则器官的运动规律被打乱,生物钟失灵,各器官组织之间的联系、平衡被打乱,能量供应和伤害修复不能正常进行,代谢功能失调,衰老进程随之加速。
(8)不良嗜好:嗜好与爱好虽然同是喜爱某一事物,但喜爱的程度深浅有所不同。对某一事的特别爱好,以至成癖时,则叫嗜好,如赏花、饮茶、打牌、下棋之适当爱好,不但无害,还可能对身心有益。但如果偏爱成癖则有害,至于吸烟、吸毒、酗酒、嫖、赌,以及其他一切不良嗜好均为恶性嗜好,沉湎于任何恶性嗜好中,不知自拔,则不仅对自身健康有害,甚至犯法,更有甚者导致身败名裂,倾家荡产,家破人亡。
4.环境因素对衰老的影响
直接或间接影响人体衰老的环境因素很多,下面来进行扼要的讨论。
(1)放射性物质和毒物:细胞核的DNA结构经放射性物质侵害后,会使细胞失去修复能力,而引起衰老,更可能引起细胞突变,产生一系列的恶果,癌肿就是其中之一。由于某些放射工业的发展,大气和水土不断受到放射性微尘的污染,因此,人体每天都在不知不觉地接受放射性的侵害,导致寿命缩短。
毒物(包括化学毒品)对人的危害随工业发达而日益严重,工业的废气、废水不断向空气及河流中倾泻;农药的广泛使用,使水土不断受到污染;城市机动车日益增多,废气污染日益严重,人类的健康和寿命受到严重威胁,中毒事件和癌肿的发病率不断上升。目前医院所用的人体正常生理指标,如血红素及血沉正常值的降低都直接、间接与放射性物质和毒物有关,有的毒物能抑制酶的活性,有的能破坏细胞的结构。化学制品中很多都是有毒的,氰类化合物、含汞化合物、有机磷化合物、亚硝酸盐类和一切有机溶剂等的毒性是一般人所熟知的。新近美国有人发现一种名为亚硝基脲乙酯的化学品在老鼠身上引起的基因突变率相当于大剂量X射线所能引起的5倍。这表明有些化学制品能严重地损害人及动物遗传基因,而导致无穷的危害。化学制品及空气污染的危害性,长期以来被工业界所忽视,是令人十分遗憾的。
(2)噪声:噪声能危害人的中枢神经系统。越来越多的迹象表明,噪声嘈杂的社会,不断在“杀害”我们当中的一些人。实验证明大鼠受噪声干扰3个月(每天干扰12小时)以后,它们心脏的结缔组织变得异常,有的发生癌肿。用人做实验证明,一家工厂的噪声量达95分贝时,工人的舒张压普遍上升。
(3)温度:人生活环境以20℃为理想气温,过高或过低都会影响代谢反应。热带居民发育和性成熟期一般比寒带和温带居民早,其衰老期的到来也较早,在高温环境中工作的人,其基础代谢一般也偏高,因而也易衰老。据对长寿老人生活情况的调查,长寿老人多生活在气温较低的山区。这些现象是符合生理规律的,因为在气温高的地区生活的人基础代谢较高,发育较快,故其衰老期到来也较早,最长寿限一般也相应缩短。
(4)阳光:阳光是人类生活和生存所必需的因素,这是大家所熟知的,不过人体过多地暴露在阳光下会受到紫外线的照射,从而受到一种放射性的伤害,破坏DNA的结构或引起DNA突变,结果产生不良后果。夏天的阳光很强,应适当防止紫外线伤害,过度的日光浴,不但无益,反而对皮肤及眼睛有害,这是值得注意的。
(5)空气:人的生活需要新鲜空气,空气中的氧是人体内生物氧化作用必需的,体内的物质代谢,包括由饮食吃进的糖类、脂类和蛋白质类的分解代谢,都需要有氧参加才能完成其代谢过程,产生能量,维持生命。人体的呼吸作用就是吸进氧和呼出二氧化碳。任何被污染的空气都不利于新陈代谢的正常运转,空气中的二氧化碳不能过高,气压也不能太高或太低。www.mljk.net 安利美丽健康网提供
(6)水土与空气一样,水土的质量也与人体健康有密切关系,凡被污染的水土,例如被农药、细菌及工厂废渣、废水污染的水土,不仅其水源不适合于人及牲畜饮用,生长在这种被污染水土上的动植物亦必然含有毒素,不宜食用。否则会使人致病,导致早衰,缩短寿命。
(7)居住条件:住屋的位置应尽可能在空气、水土和卫生条件较好的区域,居住在缺乏某些生理必需元素地区的人,要适当补充和防范这些元素(如碘、硒等)的缺乏。在含放射性物质地区工作和生活的人,应注意事先做好预防工作。房屋要光线充足,空气流通,隔热防冻也要注意。
(8)饮食:一切被放射性物质、化学物质或病菌污染的食物和腐败了的食物都对人体有害,应严加注意。
5.社会因素对衰老的影响
人是社会的动物,无时无刻不受社会因素的影响,经济、家庭、社会制度、职业、宗教信仰、意识形态、名利、毁誉,以及一切人与人之间的紧张关系,随时随地都会给人以不同的刺激,使人处于“百忧感其心,万事劳其形”的情形中。大脑皮层首先受到各种各样的冲击,其次是各项生理功能,主要是各种器官的功能受到不同的影响。当此之时,只有思想开朗、乐观积极的人,才能应付自如,保持平衡心理,维护身体的内在平衡,使代谢运转正常和器官功能正常,得享天年,否则必将百病丛生,早衰早死。就一般而论,经济因素特别重要,因为在目前,经济条件是一切生活资料的保证。据社会调查结果,一般生活条件较好的人,大多数寿命较长。但也有一些人,虽然经济条件不差,物质生活良好,但由于胸襟狭窄、得失心太重,往往不能正确对待各种逆境,而陷于忧郁苦闷之中不能自拔,结果使生理功能发生障碍,最终早衰早死。更有些人贪得无厌,放纵肆欲,吸烟、酗酒、淫乱、赌博、饮食无度、劳逸不均,不重视养生规律,或明知故犯违反自然法则,其结果亦难长寿。
1,抗利尿激素-缩写(ADH)-(来源)下丘脑,神经垂体-(主要作用)增加肾小管对水的重吸收,减少水分从尿中排出2,催乳素-缩写(PRL)-(来源)腺垂体,胎盘-(主要作用)发动和维持泌乳
3,胰岛素(来源)胰岛B细胞-(主要作用)调节代谢,降低血糖
3,胰高血糖素(来源)胰岛A细胞-(主要作用)调节代谢,升高血糖
4,催产素-缩写(OXT)-(来源)下丘脑,神经垂体-(主要作用)具有刺激乳腺和子宫的双重作用,促进乳腺排乳
5,促甲状腺激素-缩写(TSH)-(来源)腺垂体-(主要作用)促甲状腺激素的释放
6,肾上腺素-缩写(E)-(来源)肾上腺髓质-(主要作用)提高多种组织的兴奋性,加速代谢
7,甲状腺素-缩写(T4)-(来源)甲状腺-(主要作用)调节机体代谢与生长发育
8,醛固酮(来源)肾上腺皮质-(主要作用)调节机体的水-盐代谢:促进肾小管对钠的重吸收,对钾的排泄,是盐皮质激素的代表
9,促性腺激素释放激素:由下丘脑分泌 作用于垂体
10,生长激素:由垂体分泌作用于全身
11,雄性激素:由睾丸分泌 作用于全身
12,雌性激素:由卵巢分泌作用于全身
13,孕激素:由卵巢分泌 作用于卵巢和乳腺
14,胸腺激素:由胸腺分泌 作用于免疫器官 植物激素有五类,即生长素(Auxin)、赤霉素(GA)、细胞分裂素(CTK)、脱落酸(ABA)和乙烯(ethyne,ETH)。它们都是些简单的小分子有机化合物,但它们的生理效应却非常复杂、多样。例如从影响细胞的分裂、伸长、分化到影响植物发芽、生根、开花、结实、性别的决定、休眠和脱落等。所以,植物激素对植物的生长发育有重要的调节控制作用。
低浓度的生长素有促进器官伸长的作用。从而可减少蒸腾失水。超过最适浓度时由于会导致乙烯产生,生长的促进作用下降,甚至反会转为抑制。
吲哚乙酸可以人工合成。生产上使用的是人工合成的类似生长素的物质如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-滴、4-碘苯氧乙酸等,可用于防止脱落、促进单性结实、疏花疏果、插条生根、防止马铃薯发芽等方面。愈伤组织容易生芽;反之容易生根。2,在组织培养中当它们的含量大于生长素时,4-滴曾被用做选择性除草剂。细胞分裂素还可促进芽的分化。
赤霉素主要存在于幼根、幼叶、幼嫩种子和果实等部位,由甲羟戊酸经贝壳杉烯等中间物合成。后证明其中含有一种能诱导细胞分裂的成分,赤霉素在植物体内运输时无极性,通常由木质部向上运输,由韧皮部向下或双向运输。赤霉素最显著的效应是促进植物茎伸长。
细胞分裂素的主要生理作用是促进细胞分裂和防止叶子衰老。定名为赤霉素(GA)。绿色植物叶子衰老变黄是由于其中的蛋白质和叶绿素分解;而细胞分裂素可维持蛋白质的合成,从而使叶片保持绿色,发现感病稻苗的徒长和黄化现象与赤霉菌(Gibberellafujikuroi)有关。延长其寿命。细胞分裂素还可促进芽的分化。
吲哚乙酸可以人工合成。脱落酸存在于植物的叶、休眠芽、成熟种子中。生长素也有重要作用。通常在衰老的器官或组织中的含量比在幼嫩部分中的多。它的作用在于抑制 RNA和蛋白质的合成,从而抑制茎和侧芽生长,因此是一种生长抑制剂,有利于细胞体积增大。与赤霉素有拮抗作用。脱落酸通过促进离层的形成而促进叶柄的脱落,在于它能使细胞壁环境酸化、水解酶的活性增加,还能促进芽和种子休眠。
乙烯可以促进RNA和蛋白质的合成,在高等植物体内,并使细胞膜的透性增加, 生长素在低等和高等植物中普遍存在。加速呼吸作用。因而果实中乙烯含量增加时,已合成的生长素又可被植物体内的酶或外界的光所分解,可促进其中有机物质的转化,加速成熟。乙烯也有促进器官脱落和衰老的作用。用乙烯处理黄化幼苗茎可使茎加粗和叶柄偏上生长。则吲哚乙酸通过酶促反应从色氨酸合成。乙烯还可使瓜类植物雌花增多,在植物中,促进橡胶树、漆树等排出乳汁。乙烯是气体。
植物激素对生长发育和生理过程的调节作用,往往不是某一种植物激素的单独效果。能传到茎的伸长区引起弯曲。由于植物体内各种内源激素间可以发生增效或拮抗作用,只有各种激素的协调配合,才能保证植物的正常生长发育。已知的植物激素主要有以下 5类:生长素、赤霉素、细胞分裂素、脱落酸和乙烯。
白三烯开放分类: 医学、白三烯
品 名:白三烯
拼音:baisanxi
英文名称:leukotrieneLT
说明:从花生四烯酸在白细胞中代谢产物分离得到的具有共轭三烯结构的二十碳不饱和酸。可按取代基性质分为A、B、C、D、E、F六类,其中LTA3的结构为2001下标3代表碳链中双键总数。LTA4为5,6-环氧-7,9,11,14-二十碳四烯酸;LTB4为5,12-二羟基-6,8,10,14-二十碳四烯酸;LTC4为5-羟基-6-S-谷胱甘基-7,9,11,14-二十碳四烯酸;LTD4、LTE4、LTF4与LTC4类似,只是6位取代基LTD4不含谷氨酸,LTF4不含甘氨酸,LTE4只有半胱氨酸,其他白三烯命名法类似。白三烯可由花生四烯酸经脂(肪)氧合酶(lipoxygenase)催化而制得。在体内含量虽微,但却具有很高的生理活性,并且是某些变态反应、炎症以及心血管等疾病中的化学介质。白三烯及其类似物——阻断剂的研究,对于免疫以及发炎、过敏的治疗都有重要意义。
生物学功能:使毛细血管和微静脉通透性增加,造成局部水肿。
高能磷酸化合物(energy rich phosphate compounds)
机体内有许多磷酸化合物如ATP,3—磷酸甘油酸,氨甲酰磷酸,磷酸烯醇式丙酮酸,磷酸肌酸,磷酸精氨酸等,它们的磷酸基团水解时,可释放出大量的自由能,这类化合物称为高能磷酸化合物。ATP是这类化合物的典型代表。ATP水解生成ADP及无机磷酸时,可释放自由能7.3千卡(30.52千焦)。一般将水解时释放自由能在5.0千卡(20.9千焦)以上的称为高能化合物。5.0千卡以下的称为低能化合物,化学家认为键能是指断裂一个键所需要的能量,而生物化学家所指的是含有高能键的化合物水解后释放出的自由能。高能键用“~”表示。
在生物体的能量代谢中,ATP为最关键性的高能化合物,是生命活动中的直接供能者,生物体需要利用能量时,都是从高能化合物ATP水解中得到。ATP的生成,概括起来有两种方式:底物水平磷酸化,氧化磷酸化(电子传递水平磷酸化)。
档案一:什么是肌酸?
肌酸(Creatine)是一种存在于人体中的天然营养素,由三种必须氨基酸即精氨酸(Arginine)、甘氨酸(Glycine)及甲硫氨酸(Methionine)所组成。它是制造人体细胞能量—三磷酸腺甘(ATP)不可或缺之物,能提供肌肉进行快速、爆发之动作。肌酸在人体中约有95%集中在骨骼肌它b于心脏、脑及睾丸中。人体可藉由一般食物或营养补充品中获得肌酸;如果体内肌酸含量不足时,人体也可藉由肝脏、胰脏及肾脏自行合成少量的肌酸以供使用。
档案二:肌酸的基本功能
1. 增加肌肉细胞的含水量:
刚开始使用肌酸时,你会明显地感觉肌肉变得更大也更结实。这是因为肌酸会使人体的肌肉细胞储存较多量的水分;而当所有的肌肉细胞都吸收较多量的水分而增加容积时,肌肉自然会变的更加饱满、有形。
2. 帮助肌肉细胞储存能量:
人体的肌纤维中含有两种不同形式的肌酸:未键结的肌酸及带有磷酸根的磷酸肌酸,而其中磷酸肌酸约占了三分之二总肌酸的含量。当肌肉收缩产生运动时,身体会利用一种称为ATP的化合物当作其能量来源。不幸的是,人体的肌肉细胞只可提供低于十秒急速收缩所需之ATP能量,必须要有更多的ATP产生才能维持持续的运动,而此时存于肌肉中的磷酸肌酸,便会牺牲自己的磷酸根而使得ATP再次生合成。因此,如果肌肉内的肌酸较多,肌肉便有更大的潜在力量得以发挥。
此外,肌酸的补充也可帮助疲惫的肌肉细胞恢复活力,原因是当肌肉中的ATP能量耗尽时,身体也会激活另一种ATP生成系统(glycolysis)而产生乳酸(Lactic acid)。当身体激烈运动时大量的乳酸产生会使得肌肉产生酸痛感及疲惫感;此时肌肉中若能储存较多的磷酸肌酸以提供ATP,身体便会减少乳酸的制造而减少肌肉细胞的疲惫感,让我们能运动的更持久、更具爆发力。
3. 增加蛋白质的生合成:
肌酸的摄取能使身体利用较多的蛋白质来增长肌肉。而肌肉中的两种蛋白质结构物;肌动蛋白及肌凝蛋白,更是使肌肉纤维收缩而产生运动的最主要成分。因此若能补充足够量的肌酸,使得身体减少蛋白质在能量上的消耗而去合成较多量的肌动蛋白及肌凝蛋白细胞,肌肉自然会变得更强壮、更有力量。
档案三;肌酸对什么人有益?
任何人、任何年龄,无论是想增长肌肉、增加运动时的爆发力及肌耐力、或只是单纯想要身体变得较强健者,都可藉由肌酸的使用而得到助益。虽然目前有关肌酸对于提升各种运动表现的研究还不算很多,但根据现今已有的研究报告显示,愈需要爆发力或瞬间动作型的运动员愈能从肌酸中得到最大的助益。一些运动如健美、举重、短跑、游泳、棒球、橄榄球或甚至于武术家、角力选手....等,由于需要经常做出瞬间超大负荷动力的动作,因此若能藉由肌酸的补充而使肌肉于短时间内能得到最多的能量,相对的其爆发力及运动成绩表现一定会提升许多。
另一方面,肌酸对于耐力性运动项目如马拉松、自由车等,目前仍未被科学家证实有所助益。但已有研究证实可藉由提升肌酸的利用率来延缓疲劳之发生,并可降低运动后乳酸的堆积进而减少疲劳及缩短恢复的时间。
档案四;我能从食物中获得足够的肌酸吗?
一般而言平均每人每天会消耗掉1~2克的肌酸,但对于经常运动或练健身的人而言,对于肌酸的需求量远大于这个数字。肌酸主要存在于肉类、鱼类等动物性食品,植物性食品的含量相当少;此外,过度的烹煮也会破坏食物中的肌酸含量。平均来说,我们每日约可由饮食中摄取到将近1克的肌酸。
在此须注意的是,肌酸虽然可从大量的动物性食品中摄取,但其中通常夹杂着大量的油脂及胆固醇(如牛肉、猪肉等),会对我们的健康造成危害。因此最佳的摄取方式,最好还是利用脱脂、脱胆固醇的肌酸水化物(Creatine Monohydrate)
档案五;肌酸安全吗?
肌酸在体内经由肾脏代谢成肌酸酐,服用过多是否会造成肾脏功能失调?目前科学家证实每天服用二十克肌酸并未对人体产生副作用。唯一发现当超过身体负荷时,会有腹泻的情形发生,但此腹泻情形会随着服用量之减少而停止;对于其它会造成严重副作用的类固醇增强剂而言,肌酸真是既安全又可靠不过了。
肌酸与磷酸组成的化合物,为高能磷酸基的暂时贮存形式,存在于肌肉和其他兴奋性组织,如脑和神经细胞中。在脊椎动物中,肌酸与ATP反应可逆地生成磷酸肌酸,这个反应是由肌酸激酶催化的。
磷酸肌酸的功能是保持肌肉,特别是骨骼肌有较高的ATP水平。当细胞处于休息状态,ATP浓度相对高时,此反应朝磷酸肌酸净合成的方向进行;而当细胞有高代谢活性,ATP浓度低的时候,平衡移向ATP的净合成。磷酸肌酸就这样在含有肌酸激酶的组织中起作用。通常休息状态的脊椎动物骨骼肌含有充分的磷酸肌酸,可提供其自由能需求达数分钟(但在最大限度使用时只有数秒钟)。在某些无脊椎动物,如蟹的肌肉中,磷酸精氨酸的功能与上述磷酸肌酸的功能相同
去甲肾上腺素
开放分类: 医学、药理学、拟肾上腺素药、α受体兴奋药
原文也可写做norepinephrine或L-arterenol。它是从副肾髓质和肾上腺素一起被提取出来的激素(广义)。在哺乳动物中,它从交感神经的末端作为化学传递物质被分泌出来。是从肾上腺素中去掉N-甲基的物质。牛的副肾髓质里去甲肾上腺素和肾上腺素的含量是1∶4(1份去甲肾上腺素,4份肾上腺素)。市售的肾上腺素含有10—20%的去甲肾上腺素。其作用如表所示与肾上腺素类似,但在量上和或质上均稍有差别。去甲肾上腺通过转甲基作用,变成肾上腺素,这种转甲基作用的反应,需要有副肾内的酶和ATP的存在。髓质以外的很多嗜铬组织,也能分泌出去甲肾上腺素。
去甲肾上腺素是一种血管收缩药和正性肌力药。药物作用后心排血量可以增高,也可以降低,其结果取决于血管阻力大小、左心功能的好坏和各种反射的强弱,例如颈动脉压力感受器的反射。
去甲肾上腺素经常会造成肾血管和肠系膜血管收缩。严重低血压(收缩压<70mmHg)和周围血管低阻力是其应用的适应症,其应用的相对适应症是低血容量。应该注意该药可以造成心肌需氧量增加,所以对于缺血性心脏病患者应谨慎应用。去甲肾上腺素渗漏可以造成缺血性坏死和浅表组织的脱落。
去甲肾上腺素的具体用法:将去甲肾上腺素4mg或重酒石酸去甲肾上腺素8mg(2mg重酒石酸去甲肾上腺素效价与1mg去甲肾上腺素相同)加入250ml含盐或不含盐的平衡液中,产生16ug/mL去甲肾上腺素液或32ug/mL重酒石酸去甲肾上腺素液。去甲肾上腺素起始剂量为0.5-1.0ug/分钟,逐渐调节至有效剂量。顽固性休克患者需要去甲肾上腺素量为8-30ug/分钟。需要注意的是给药时不能在同一输液管道内给予碱性液体,后者可以使药物失活。如果发生药物渗漏,尽快给予含5-10mg酚妥拉明的盐水10-15ml,以免发生坏死和组织脱落。
功用作用: 主要激动α受体,对β受体激动作用很弱,具有很强的血管收缩作用,使全身小动脉与小静脉都收缩(但冠状血管扩张),外周阻力增高,血压上升。兴奋心脏及抑制平滑肌的作用都比肾上腺素弱。临床上主要利用它的升压作用,静滴用于各种休克(但出血性休克禁用),以提高血压,保证对重要器官(如脑)的血液供应。</P><P>使用时间不宜过长,否则可引起血管持续强烈收缩,使组织缺氧情况加重。应用酚妥拉明以对抗过分强烈的血管收缩作用,常能改善休克时的组织血液供应。
用法用量:(1)静滴:临用前稀释,每分钟滴入4~10μg,根据病情调整用量。可用1~2mg加入生理盐水或5%葡萄糖100ml内静滴,根据情况掌握滴注速度,待血压升至所需水平后,减慢滴速,以维持血压于正常范围。如效果不好,应换用其他升压药。对危急病例可用1~2mg稀释到10~20ml,徐徐推入静脉,同时根据血压以调节其剂量,俟血压回升后,再用滴注法维持。</P><P> (2)口服:治上消化道出血,每次服注射液1~3ml(1~3mg),1日3次,加入适量冷盐水服下。</P><P>
注意事项:(1)抢救时长时间持续使用本品或其他血管收缩药,重要器官如心、肾等将因毛细血管灌注不良而受不良影响,甚至导致不可逆性休克,须注意。
(2)高血压、动脉硬化、无尿病人忌用。
(3)本品遇光即渐变色,应避光贮存,如注射液呈棕色或有沉淀,即不宜再用。
(4)不宜与偏碱性药物如磺胺嘧啶钠、氨茶碱等配伍注射,以免失效;在碱性溶液中如与含铁离子杂质的药物(如谷氨酸钠、乳酸钠等)相遇,则变紫色,并降低升压作用。
(5)浓度高时,注射局部和周围发生反应性血管痉挛、局部皮肤苍白,时久可引起缺血性坏死,故滴注时严防药液外漏,滴注以前应对受压部位(如臀部)采取措施,减轻压迫(如垫棉垫)。如一旦发现坏死,除使用血管扩张剂外,并应尽快热敷并给予普鲁卡因大剂量封闭。小儿应选粗大静脉注射并须更换注射部位。静脉给药时必须防止药液漏出血管外。
(6)用药当中须随时测量血压,调整给药速度,使血压保持在正常范围内。
(7)其他参见肾上腺素。
5-羟色胺
开放分类: 化学、化合物、有机物
5-hydroxy tryptamine
一种吲哚衍生物。分子式C10H12N2O。普遍存在于动植物组织中 。
色氨酸经色氨酸羟化酶催化首先生成5-羟色氨酸,再经5-羟色氨酸脱羧酶催化成5-羟色胺。
5-羟色胺最早是从血清中发现的,又名血清素,广泛存在于哺乳动物组织中,特别在大脑皮层质及神经突触内含量很高,它也是一种抑制性神经递质。在外周组织,5-羟色胺是一种强血管收缩剂和平滑肌收缩刺激剂。在体内,5-羟色胺可以经单胺氧化酶催化成5-羟色醛以及5-羟吲哚乙酸而随尿液排出体外。
5-羟色胺能与酸作用生成结晶盐 。其盐酸盐熔点167~168℃ ;苦味酸盐熔点185~189℃。5-羟色胺在脑组织中的浓度较高,它是调节神经活动的一种重要物质。有些肌体组织当受到某些药物作用时,可以释放出5-羟色胺,例如一个利血平分子可以使受作用的组织释放出几百个5-羟色胺分子,因而产生利血平的一系列生理作用。
作为自体活性物质,约90%合成和分布于肠嗜铬细胞,通常与ATP等物质一起储存于细胞颗粒内。在刺激因素作用下,5-HT从颗粒内释放、弥散到血液,并被血小板摄取和储存,储存量约占全身的8%。5-HT作为神经递质,主要分布于松果体和下丘脑,可能参与痛觉、睡眠和体温等生理功能的调节。中枢神经系统5-HT含量及功能异常可能与精神病和偏头痛等多种疾病的发病有关。
5-HT必须通过相应受体的介导才能产生作用。5-HT受体分型复杂,已发现7种5-HT受体亚型。5-HT通过激动不同的5-HT受体亚型,可具有不同的药理作用,但5-HT本身尚无临床应用价值。
摩尔
开放分类: 化学、单位、伊斯兰、物理量、中世纪
摩尔
摩尔是表示物质的量的单位,每摩物质含有阿伏加德罗常数个微粒。
摩尔简称摩,符号为mol。
根据科学实验的精确测定,知道12g相对原子质量为12的碳中含有的碳原子数约6.02×10^23。
科学上把含有6.02×10^23个微粒的集体作为一个单位,叫摩。摩尔是表示物质的量(符号是n)的单位,简称为摩,单位符号是mol。
1mol的碳原子含6.02×10^23个碳原子,质量为12g。
1mol的硫原子含6.02×10^23个硫原子,质量为32g,同理,1摩任何原子的质量都是以克为单位,数值上等于该种原子的相对原子质量(式量)。
同样我们可以推算出,1摩任何物质的质量,都是以克为单位,数值上等于该种物质的式量。
水的式量是18,1mol的质量为18g,含6.02×10^23个水分子。
通常把1mol物质的质量,叫做该物质的摩尔质量(符号是M),摩尔质量的单位是克/摩(符号是“g/mol”)例如,水的摩尔质量为18g/mol,写成M(H2O)=18g/mol。
物质的质量(m)、物质的量(n)与物质的摩尔质量(M)相互之间有怎样的关系呢?
化学方程式可以表示反应物和生成物之间的物质的量之比和质量之比。例如:
系数之比2∶1∶2
微粒数之比2∶1∶2
物质的量之比2∶1∶2
质量之比4∶32∶36
从以上分析可知,化学方程式中各物质的系数之比就是它们之间的物质的量之比。运用这个原理就可以根据化学方程式进行各物质的量的有关计算。
物质的量的单位,符号为mol,是国际单位制7个基本单位之一。摩尔是一系统物质的量,该系统中所包含的基本微粒数与12g12C的原子数目相等。使用摩尔时基本微粒应予指明,可以是原子、分子、离子及其他粒子,或这些粒子的特定组合体。
12C=12,是国际相对原子质量(式量)的基准。现知12g12C中含6.0221367×10^23个碳原子。这个数叫阿伏加德罗数,所以也可以说,包含阿伏加德罗数个基本微粒的物质的量就是1mol。例如1mol氧分子O2中含6.0221367×10^23个氧分子。其质量为31.9988g。1mol氢离子H+中含6.0221367×10^23个氢离子,其质量为1.00794g。
摩尔是在1971年10月,有41个国家参加的第14届国际计量大会决定增加的国际单位制(SI)的第七个基本单位。摩尔应用于计算微粒的数量、物质的质量、气体的体积、溶液的浓度、反应过程的热量变化等。
1971年第十四届国际计量大会关于摩尔的定义有如下两段规定:“摩尔是一系统的物质的量,该系统中所包含的基本单元数与0.012kg碳—12的原子数目相等。”“在使用摩尔时应予以指明基本单元,它可以是原子、分子、离子、电子及其他粒子,或是这些粒子的特定组合。”上两段话应该看做是一个整体。0.012kg碳—12核素所包含的碳原子数目就是阿伏加德罗常数(NA),目前实验测得的近似数值为NA=6.02×10^23。摩尔跟一般的单位不同,它有两个特点:①它计量的对象是微观基本单元,如分子、离子等,而不能用于计量宏观物质。②它以阿伏加德罗数为计量单位,是个批量,不是以个数来计量分子、原子等微粒的数量。也可以用于计量微观粒子的特定组合,例如,用摩尔计量硫酸的物质的量,即1mol硫酸含有6.02×1023个硫酸分子。摩尔是化学上应用最广的计量单位,如用于化学反应方程式的计算,溶液中的计算,溶液的配制及其稀释,有关化学平衡的计算,气体摩尔体积及热化学中都离不开这个基本单位。
欢迎分享,转载请注明来源:优选云