根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2。
素数就是质数。它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。有的数,如果单凭印象去捉摸,是无法确定它到底是不是素数的。有些数则可以马上说出它不是素数。一个数,不管它有多大,只要它的个位数是2、4、5、6、8或0,就不可能是素数。此外,一个数的各位数字之和要是可以被3整除的话,它也不可能是素数。但如果它的个位数是1、3、7或9,而且它的各位数字之和不能被3整除,那么,它就可能是素数(但也可能不是素数)。没有任何现成的公式可以告诉你一个数到底是不是素数。你只能试试看能不能将这
个数表示为两个比它小的数的乘积。
找素数的一种方法是从2开始用“是则留下,不是则去掉”的方法把所有的数列出来(一直列到你不想再往下列为止,比方说,一直列到10,000)。第一个数是2,它是一个素数,所以应当把它留下来,然后继续往下数,每隔一个数删去一个数,这样就能把所有能被2整除、因而不是素数的数都去掉。在留下的最小的数当中,排在2后面的是3,这是第二个素数,因此应该把它留下,然后从它开始往后数,每隔两个数删去一个,这样就能把所有能被3整除的数全都去掉。下一个未去掉的数是5,然后往后每隔4个数删去一个,以除去所有能被5整除的数。再下一个数是7,往后每隔6个数删去一个;再下一个数是11,往后每隔10个数删一个;再下一个是13,往后每隔12个数删一个。……就这样依法做下去。
你也许会认为,照这样删下去,随着删去的数越来越多,最后将会出现这样的情况;某一个数后面的数会统统被删去崮此在某一个最大的素数后面,再也不会有素数了。但是实际上,这样的情况是不会出现的。不管你取的数是多大,百万也好,万万也好,总还会有没有被删去的、比它大的素数。
事实上,早在公元前300年,希腊数学家欧几里得就已证明过,不论你取的数是多大,肯定还会有比它大的素数,假设你取出前6个素数,并把它们乘在一起:2*3*5*7*11*13=30030,然后再加上1,得30031。这个数不能被2、3、5、7、11、13整除,因为除的结果,每次都会余1。如果30031除了自己以外不能被任何数整除,它就是素数。如果能被其它数整除,那么30031所分解成的几个数,一定都大于13。事实上,30031=59*509。
对于前一百个、前一亿个或前任意多个素数,都可以这样做。如果算出了它们的乘积后再加上1,那么,所得的数或者是一个素数,或者是比所列出的素数还要大的几个素数的乘积。不论所取的数有多大,总有比它大的素数,因此,素
数的数目是无限的。
随着数的增大,我们会一次又一次地遇到两个都是素数的相邻奇数对,如5,7;11,13;17,19;29,31;41,43;等等。就数学家所能及的数来说,它们总是能找到这样的素数对。这样的素数对到底是不是有无限个呢?谁也不知道。数学家认为是无限的,但他们从来没能证明它。这就是数学家为什么对素数感兴趣的原因。素数为数学家提供了一些看起来很容易、但事实却非常难以解决的问题,他们目前还没能对付这个挑战哩。
迄今为止,人类发现的最大的素数是 224036583-1,这是第 41 个 梅森(Mersenne)素数。
素数也叫质数,是只能被自己和 1 整除的数,例如2、3、5、7、11等。2500 年前,希腊数学家欧几里德证明了素数是无限的,并提出少量素数可写成“2 的n次方减 1”的形式,这里 n 也是一个素数。此后许多数学家曾对这种素数进行研究,17 世纪的法国教士马丁·梅森(Martin Mersenne)是其中成果较为卓著的一位,因此后人将“2的n次方减1”形式的素数称为梅森素数。
http://baike.baidu.com/view/1767.htm
一个数,如果只有1和它本身两个因数,这样的数叫做质数,又称素数。例如(10以内) 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。特别声明一点,1既不是质数也不是合数。为什么1不是质数呢?因为如果把1也算作质数的话,那么在分解质因数时,就可以随便添上几个1了。比如30,分解质因数是2*3*5,因为分解质因数是要把一个数写成质数的连乘积,如果把1算作质数的话,那么在这个算式中,就可以随便添上几个1了,分解质因数也就没法分解了。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(1不是质数,也不是合数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。质数中除2是偶数外,其他都是奇数。2000年前,欧几里德证明了素数有无穷多个。既然有无穷个,那么是否有一个通项公式?两千年来,数论学的一个重要任务,就是寻找一个可以表示全体素数的素数普遍公式和孪生素数普遍公式,为此,人类耗费了巨大的心血。希尔伯特认为,如果有了素数统一的素数普遍公式,那么这些哥德巴赫猜想和孪生素数猜想都可以得到解决。欢迎分享,转载请注明来源:优选云