1.根据受体的亚细胞定位分类:
⑴细胞膜受体:这类受体是细胞膜上的结构成分,一般是糖蛋白、脂蛋白或糖脂蛋白.多肽及蛋白质类激素、儿茶酚胺类激素、前列腺素以及细胞因子通过这类受体进行跨膜信号传递.
⑵细胞内受体:这类受体位于细胞液或细胞核内,通常为单纯蛋白质.此型受体主要包括类固醇激素受体,维生素D3受体(VDR)以及甲状腺激素受体(TR).
2.根据受体的分子结构分类:
⑴配体门控离子通道型受体:此型受体本身就是位于细胞膜上的离子通道.其共同结构特点是由均一性的或非均一性的亚基构成一寡聚体,而每个亚基则含有4~6个跨膜区.此型受体包括烟碱样乙酰胆碱受体(N-AchR)、A型γ-氨基丁酸受体(GABAAR)、谷氨酸受体等.
⑵G蛋白偶联型受体:此型受体通常由单一的多肽链或均一的亚基组成,其肽链可分为细胞外区、跨膜区、细胞内区三个区.在第五及第六跨膜α螺旋结构之间的细胞内环部分(第三内环区),是与G蛋白偶联的区域.大多数常见的神经递质受体和激素受体是属于G蛋白偶联型受体.
G蛋白是由α、β、γ亚基组成的三聚体,存在于细胞膜上,其α亚基具有GTPase活性.当配体与受体结合后,受体的构象发生变化,与α亚基的C-端相互作用, G蛋白被激活,此时,α亚基与β、γ亚基分离,可分别与效应蛋白(酶)发生作用.此后,α亚基的GTPase将GTP水解为GDP,α亚基重新与β、γ亚基结合而失活.
⑶单跨膜α螺旋型受体:此型受体只有一段α螺旋跨膜,受体本身具有酪氨酸蛋白激酶活性;或当受体与配体结合后,再与具有酪氨酸蛋白激酶活性的酶分子相结合,进一步催化效应酶或蛋白质的酪氨酸残基磷酸化,也可以发生自身蛋白酪氨酸残基的磷酸化,由此产生生理效应.
此型受体主要有表皮生长因子受体(EGFR),胰岛素受体(IR),血小板衍生生长因子受体(PDGFR)等.此型受体的主要功能与细胞生长及有丝分裂的调控有关.
⑷转录调控型受体:此型受体分布于细胞浆或细胞核内,其配体通常具有亲脂性.结合配体的受体被活化后,进入细胞核作用于染色体,调控基因的开放或关闭.受体的分子结构有共同特征性结构域,即分为高度可变区-DNA结合区及绞链区-激素结合区.①高度可变区:不同激素的受体此区的一级结构变化较大,其功能主要是与调节基因转录表达有关.②DNA结合区及绞链区:此区的功能是与受体被活化后向细胞核内转移(核转位)并与特异的DNA顺序结合有关.③激素结合区:一般情况下,此区与一种称为热休克蛋白90(hsp90)的蛋白质结合在一起而使受体处于失活状态.
受体是能够同激素、神经递质、药物或者细胞内信号分子结合,并能引起细胞功能变化的生物大分子物质。根据受体所处的位置的不同,将受体分为细胞膜受体和细胞内受体。细胞膜受体就是指位于细胞膜上,细胞内受体就是位于细胞内。受体具有专一性,也就是说,某一物质的受体只能结合该物质,而并不会结合其他的物质,受体也具有高亲和性和可逆性的特点。
从结构上来看,受体可分为两部分,一部分就是专门跟其他成分相结合的部分,就是配体,另一部分就是负责产生应答反应的部位,也就是活性部位。只有受体在接受了相对应的物质成分,而且配体部分和应答部分共同作用,才能产生相应的细胞反应。
如果某些受体在结合和相应的物质产生的细胞应答反应过于强烈,或者会造成身体健康方面的危害,可以选择该受体的阻滞剂降低受体与相应物质的结合,从而改善健康水平。比如β受体的活性增加,可能会引起心率加快、血压升高等,可以选择β受体阻滞剂改善这些异常的临床状况。
能与细胞外专一信号分子(配体)结合引起细胞反应的蛋白质。分为细胞表面受体和细胞内受体。受体可大致分为三类:
1.细胞膜受体:位于靶细胞膜上,如胆碱受体、肾上腺素受体、多巴胺受体、阿片受体等。
2.胞浆受体:位于靶细胞的胞浆内,如肾上腺皮质激素受体、性激素受体。
3.胞核受体:位于靶细胞的细胞核内,如甲状腺素受体。
另外也可根据受体的蛋白结构、信息转导过程、效应性质、受体位置等特点将受体分为四类:
1.含离子通道的受体(离子带受体):如N-型乙酰胆碱受体含钠离子通道。
2.G蛋白偶联受体:M-乙酰胆碱受体、肾上腺素受体等。
3.具有酪氨酸激酶活性的受体:如胰岛素受体。
4.调节基因表达的受体(核受体):如甾体激素受体、甲状腺激素受体等。
有些受体具有亚型,各种受体都有特定的分布部位核特定的功能,有些细胞也有多种受体。
欢迎分享,转载请注明来源:优选云