标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
简单来说,标准差是一组数据平均值分散程度的一种度量。一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
例如,两组数的集合{0,5,9,14}和{5,6,8,9}其平均值都是7,但第二个集合具有较小的标准差。
标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色。
如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。
标准差(Standard Deviation) ,是离均差平方的算术平均数(即:方差)的算术平方根,用σ表示。标准差也被称为标准偏差,或者实验标准差,在概率统计中最常使用作为统计分布程度上的测量依据。
标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同。
扩展资料:
方差统计学意义:
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
参考资料来源:百度百科-方差
参考资料来源:百度百科-标准差
标准差,在概率统计中最常使用作为统计分布程度上的测量。为方差的算术平方根,反映组内个体间的离散程度。
标准差的特性:
1、如果在一个分布中每个分数都加上(或减去)一个常数,则标准差不变。
2、如果每一个分数都乘上(或除以)一个常数,则标准差也将乘上(或除以)那个常数。
3、从均数计算的标准差比分布中根据任何其他点计算的标准差都要小。
计算公式:
假设有一组数值X₁,X₂,X₃,......Xn(皆为实数),其平均值(算术平均值)为μ
【例】计算下列数据的标准差:50,55,96,98,65,100,70,90,85,100.
极差=100-50=50
平均数=(50+55+96+98+65+100+70+90+85+100)/10=80.9
方差=[(50-80.9)²+(55-80.9)²+(96-80.9)²+(98-80.9)²+(65-80.9)²+(100-80.9)²+(70-80.9)²+(90-80.9)²+(85-80.9)²+(100-80.9)²]/10=334.69
标准差=≈18.29
欢迎分享,转载请注明来源:优选云