半导体硅材料的制备

半导体硅材料的制备,第1张

结晶态硅材料的制备方法通常是先将硅石(SiO2)在电炉中高温还原为冶金级硅(纯度95%~99%),然后将其变为硅的卤化物或氢化物,经提纯,以制备纯度很高的硅多晶。包括硅多晶的西门子法制备、硅多晶的硅烷法制备。在制造大多数半导体器件时,用的硅材料不是硅多晶,而是高完整性的硅单晶。通常用直拉法或区熔法由硅多晶制得硅单晶。

世界上直拉硅单晶和区熔硅单晶的用量约为9:1,直拉硅主要用于集成电路和晶体管,其中用于集成电路的直拉硅单晶由于其有明确的规格,且其技术要求严格,成为单独一类称集成电路用硅单晶。区熔硅主要用于制作电力电子元件,纯度极高的区熔硅还用于射线探测器。硅单晶多年来一直围绕着纯度、物理性质的均匀性、结构完整性及降低成本这些问题而进行研究与开发。

材料的纯度主要取决于硅多晶的制备工艺,同时与后续工序的玷污也有密切关系。材料的均匀性主要涉及掺杂剂,特别是氧、碳含量的分布及其行为,在直拉生长工艺中采用磁场(见磁控直拉法单晶生长)计算机控制或连续送料,使均匀性得到很大改善;对区熔单晶采用中子嬗变掺杂技术,大大改善了均匀性。在结构完整性方面,直拉硅单晶早已采用无位错拉晶工艺,目前工作主要放在氧施主、氧沉淀及其诱生缺陷与杂质的相互作用上。

氧在热处理中的行为非常复杂。直拉单晶经300~500℃热处理会产生热施主,而经650℃以上热处理可消除热施主,同时产生氧沉淀成核中心,在更高温度下处理会产生氧沉淀,形成层错和位错等诱生缺陷,利用这些诱生缺陷能吸收硅中有害金属杂质和过饱和热点缺陷的特性,发展成使器件由源区变成“洁净区”的吸除工艺,能有效地提高器件的成品率。

对硅单晶锭需经切片、研磨或抛光(见半导体晶片加工)后,提供给器件生产者使用。

某些器件还要求在抛光片上生长一层硅外延层,此种材料称硅外延片。

非晶硅材料具有连续无规的网格结构,最近邻原子配位数和结晶硅一样,仍为4,为共价键合,具有短程有序,但是,键角和键长在一定范围内变化。由于非晶硅也具有分开的价带和导带,因而有典型的半导体特性,非晶硅从一晶胞到另一晶胞不具有平移对称性,即具有长程无序性,造成带边的定域态和带隙中央的扩展态,非晶硅属亚稳态,具有某些不稳定性。其制备方法有辉光放电分解法等(见太阳电池材料)。

在本征半导体中掺入化合价比本征半导体要高的杂质。

比如硅是四价,掺入五价的磷,这样每个磷就贡献出了一个价带电子,成为n型。

反之如果要制备p型,就掺入化合价较低的杂质,比如硅里面掺硼。

另外,掺杂只是一种方法。还有一些特殊的半导体利用缺陷形成n型或p型的,或者自然而然就是n型,想造p型都困难的半导体,这里就不再赘述了。

定义:玻璃半导体是指由无机氧化物(如二氧化硅和氧化硼)和过渡金属离子(如铁、铜、钼、钒和铬等)组成的氧化玻璃半导体和非氧化物(如硫、硒、磷、碲、硅和锗等元素中的某几种元素组成)玻璃半导体。

分类:大致可分为三类:

(1)以IV族元素为主要成分的非晶半导体,如非晶硅,锗等;

(2)以VI族元素为主要成分的半导体,如碲-锗共熔体,硫砷,硒砷等;

(3)氧化物玻璃半导体[1],如V2O5-P2O5,V2O5-P2O5-BaO等。

应用场合:玻璃半导体具有多种特性。如某些玻璃半导体的电阻率在光、电、热等作用下可改变4~5个数量级;某些玻璃半导体的透过率,折射率,反射率等在光,热作用下变化很大;某些玻璃半导体的化学性质(溶解度、抗蚀性)在光、热作用下显著改变。这些特性的变化都是由于材料在光、电、热作用下,其组成、结构或电子状态发生了变化。利用上述特性可制作存贮器件、光记录材料、光电导材料,如电视摄像管的靶面材料、静电复印材料和太阳能电池材料等,用途十分广泛。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/6250832.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-03-19
下一篇2023-03-19

发表评论

登录后才能评论

评论列表(0条)

    保存