第三章 语音信号特征分析

第三章 语音信号特征分析,第1张

语音合成音质的好坏,语音识别率的高低,都取决于对语音信号分析的准确度和精度。例如,利用线性预测分析来进行语音合成,其先决条件是要用线性预测方法分析语音库,如果线性预测分析获得的语音参数较好,则用此参数和成的语音音质就较好。例如,利用带通滤波器组法来进行语音识别,其先决条件是要弄清楚语音共振峰的幅值,个数,频率范围及其分布情况。

语音信号特征的分析可以分为时域,频域和倒谱域。

时域分析简单直观,清晰易懂,物理意义明确。

更多有效的分析是围绕频域进行的,因为语音中最重要的感知特性反应在其功率谱中,其相位变化只起着很小的作用。

常用频域分析有带通滤波器组,傅里叶变换法和线性预测分析法。频谱具有很明显的声学特性,利用频域分析获得的特征具有实际的物理意义,如共振峰参数,基音参数周期等。

倒谱域是对对数功率谱进行傅里叶反变换得到的,可以将声道特性和激励特性有效的分开,更好的揭示语音信号的本质特征。

可以将语音信号分析分为模型分析法和非模型分析法两种。模型分析法是指依据语音信号产生的数学模型,来分析和提取表征这些模型的特征参数;共振峰模型分析法和线性预测都术语这种方法。凡不进行模型化分析的其他方法都属于非模型分析法,包括上面提到的时域分析法,频域分析法及同态分析法。

贯穿语音信号分析全过程的是“短时分析技术”。短时间内特性基本保持不变,相对稳定,准稳态过程。10~30ms内保持相对平稳。

实际信号常有一些低能量的信号分量超过采样频率的一半,如浊音的频谱超过4khz的分量至少比峰值低40db,而清音,超过8khz,频率分量也没有显著下降,因此语音信号所占的频率范围可以达到10khz以上,但对语音清晰度的有明显影响部分的最高频率为57kHZ左右。

电话系统为8kHZ,而时间中,采样频率为8-10kHZ,而语音合成或者语音识别,获得更高的质量,采样频率一般为15——20kHZ。

在一般的识别系统中,采样率最高为16kHZ,当继续增加采样率是,识别率几乎没有增加。

量化: 有三种方式,零记忆量化,分组量化和序列量化。

假设语音信号在10~30ms内是平稳的,后面所有的分析都是在这个假设下进行的。

为了得到短时的语音信号,要对语音信号进行加窗的 *** 作,窗函数平滑的在语音信号上滑动,将语音信号分成帧。分帧可以连续,也可以采用交叠分段,交叠部分称为帧移,一般为窗长的一般。

加窗时,不同窗口将影响到语音信号分析的结果

​ 窗的长度对能否反映语音信号的幅度变化起决定性作用。如果N特别大,即等于几个基因周期量级,则窗函数等效于很窄的低通滤波器,此时信号短时信息将缓慢的变化,因而不能充分反映波形变化的细节。如果N特别小,即等于或小于一个基因周期的量级,则信号的能量将按照信号波形的细微状况而很快的启发,但如果N太小,滤波器的通带变宽,则不能获得平滑的短时信息,因此窗口的长度要选择合适。窗的衰减基本与窗的持续时间无关,因此当改变宽度N时,会使带宽发生变化。

窗口长度是相对于语音信号的汲引周期而言,通常认为一个语音帧内,应含有1~7个基音周期,然而不同人的基音周期变化范围很大,基音周期的持续时间会从高音的约20个采样点变化到低音调250个采样点,这意味着可能需要多个不同的N值,所以N的选择比较困难,通常在采样频率10kHZ的情况,N选择100~200量级(10~20ms)持续时间是比较合适的。

有声(V)无声(S)清音(U)判决。

能够实现这些判决的依据再于,不同性质的语音各种短时参数具有不同的概率密度函数,以及相邻的若干帧具有一致的语音特性,不会再S , U, V之间快速变化。

每个语音的输入起点和重点,利用短时平均幅度参数M和短时过零率可以做到这一点。

浊音情况下短时平均幅度参数的概率密度函数P(M|V)确定一个阈值参数M_H根据M_H可以确定前后两个点A_1和A_2 后肯定是语音段,但精确起点,还要仔细查找。

为此,再设定一个较低的阈值参数M_L, 然后确定B_1 和 B_2, 从这两个点之后用短时过零率搜索。 清音的过零率高于无声段,但是能量低。

但是在研究结果中表明,利用短时平均过零率区分无声和清音在有些情况下不是很可靠,由于清音的强度会比无声段高一下,将门限提高一些对清音的影响不大,但在没有背景噪声的情况下,无声段将不会穿越这一提高的电平,因为可以正确区分清音和无声段。

因此采用这种过零率,具有抗干扰能力

滤波器可以是宽带带通滤波器,具有平摊的特性,粗略求语音的频谱,频率分辨率低,可以是窄带滤波器,频率分辨率较高。

现在一般都在用数字滤波器,其中如何将模拟滤波器数字化,涉及到零点极点的内容,需要参考DSP的内容。极点波峰,零点波谷。

为窗口函数。

两种方式来理解物理意义

在实际计算时,一般用离散傅里叶变换代替连续傅里叶变换,则需要对信号进行周期延拓。(非周期->连续谱,周期->离散谱),这时候得到的是功率谱 。 如果窗长度为 , 那么 的长度为 , 如果对 以 进行周期拓展,则自相关就会出现混叠现象,即这个周期的循环相关函数在一个周期中的值就与线性相关 的值不同,这样得到的功率谱就是一组前采样,若想得到全部的 个值,可以补充L个零,扩展成2L的信号,并做离散傅里叶变换,这时的循环相关与现行相关是等价的。( 后面这句话对我来说暂时是天书 )

在对窗函数的分析中,我们知道对于任何一个窗函数都存在旁瓣效应,这时候有谐波效应。

语谱图的时间分辨率和频率分辨率是由所采用的窗函数决定的。假设时间固定,对信号乘以窗函数相当于在频域用窗函数的频率响应与信号频谱的卷积。如果窗函数的频率响应 的通带宽度为 ,那么语谱图中的频率分辨率的宽度即为 。即卷积的作用将使任何两个相隔间隔频率小于 的谱峰合并为一个单峰。对于窗函数而言,通带宽度与窗长成反比,如果希望频率分辨率高,则窗长应该尽量长一些。

对于时间分辨率,假设频率固定,相当于对时间序列 做低通滤波,输出信号的带宽就是 的带宽b,根据采样定理,只需要以 的采样率就可以反映出信号的所有频率成分,这时候所具有的时间分辨率的宽度为 因此如果希望时间分辨率高,则窗长应该短一些。因此时间分辨率和频率分辨率是相互矛盾的,这也是短时傅里叶变换本身固有的缺点。

点评:

126新增理解:

这类线性主要有短时傅里叶变换与Gabor变换和小波变换,其中STFT和Gabor变换是一种加窗的傅里叶变换,使用固定大小的时频网格,时频网格在时频变换只限于时间平移和频率平移,窗函数固定的,只适用于分析带宽固定的非平稳信号,实际应用中,希望对低频分析,频率分辨率高,高频时间分辨率高,要求窗函数宽度能随之频率变化而变化。小波分析的视频分析网格变化除了时间平移外,还有时间和频率轴比例尺度的改变。适用于分析具有固定比例带宽的非平稳信号。

这类时频由能量谱或功率谱演化而来,其特点是变换为二次的。双线性关系可以表示为

其中 为能量谱,而 表示取共轭 *** 作。

点评: 好像没见过,先跳过。。。。。

在信号分析与信号处理中,信号的“时间中心”及“时间宽度”以及频率中心与频率宽度是非常重要的概念,分别说明信号在时域和频域中心位置在两个域的扩展情况。

信号再这两个物理量的测量上有一个重要的约束原则,就是著名的“不确定性原理”。它的意义是,信号波形在频率轴上的扩张和时间轴上的扩张不可能同时小于某一界限,即若函数 和 构成一堆傅里叶变换,则不可能同时是短宽度的,即

等号成立的充分必要条件是 为高斯函数,即 证明,用Cauchy-Schwarts不等式可得。

窗函数为高斯函数的短时傅里叶变换称为Gabor变换。

是大于0的固定常数。由于 , 因此 这表明,信号 的gabor 变换 是对任何 在时间 附近对 傅里叶变换的局部化(在说什么??),达到了对 的精确分解。

Gabor变换是具有最小时频窗的短时傅里叶变换。但进一步研究发现,这两种变换都没有离散的正交基, 所以没有像离散傅里叶变换FFT那种快速算法。而且窗函数固定不变,不能随着所分析信号的成分是高频还是低频做相应的变化。所以这时候有小波变换,能够自动调节窗口长度。

小波理论采用多分辨率的分析的思想,非均匀地划分时频空间,为非平稳信号的分析提供了新途径。

定义: 小波是函数空间 中满足下述条件的一个函数或者信号

其中 表示全体非零实数, 为 的频域表示形式。 称为小波母函数。对于任意实数对,称如下形式的函数为右小波母函数生成的依赖于参数(a,b)的连续小波函数,称为小波,其中a必须为非零实数。

的作用是把基本小波 做伸缩, 的作用是确定对 分析的时间位置,也即是实践中心。 在 的附近存在明显的波动,而且波动范围的大小完全依赖于尺度因子 的变化。 时,一致, 时,范围比原来小波函数 范围大些,小波的波形变得矮宽,变化越来越缓慢,当 时, 在 附近波动范围药效,小波波形尖锐而消瘦。

给定平方可积的信号 ,即 , 则 的小波变换定义为

与傅里叶变换不同,小波变换是一个二元函数。另外,因为母函数 只在原点附近才会有明显偏离水平轴的移动,远离原点,迅速衰减为0

假设小波函数 及傅里叶变换 都满足窗口函数的要求,他们的窗口中心和半径分别记为 和 和 和 , 可以证明对于任意任意参数对,连续小波变换和其傅里叶变换都满足窗口函数的要求,他们的窗口中心和宽度分别为

则时频窗是平面一个可变的矩形,面积为 这个面积只与小波的母函数 有关,与 无关,但形状随着a变换。

如果按照线性模型理论,语音信号是由激励信号和声道响应卷积产生。解卷就是将各卷积分量分开。解卷算法分为两大类,一类称为“参数解卷”,即线性预测分析,另一类算法称为“非参数解卷”,即同态解卷积,对语音信号进行同态分析后,将得到语音信号的倒谱参数,此时同态分析也称为 倒谱分析或者同态处理。

同态处理是一种较好的解卷积方法,它可以较好的将语音信号中的激励信号和声道响应分离,并且只需要用十几个倒谱系数就能相当好的描述语音信号的声道特性,因此占很重要的位置。

通常的加性信号可以用线性系统处理,满足线性叠加原理。然后很多信号是由乘性信号或者卷积信号组合的信号。这样的信号不能用线性系统处理,得用非线性系统处理。但是非线性系统分析起来困难,同态语音辛哈就是将非线性问题转换为线性问题处理。语音信号可以看做是声门激励信号与声道响应的卷积结果,所以下面仅讨论卷积同态信号的处理问题。

同态语音信号处理的一个通用的系统如图3-23所示,其符号 表示由卷积组合规则组合起来的空间,即该系统的输入和输出都是卷积性信号。同态系统的一个最主要理论结果是同态系统理论分解,分解的目的是用两个特征系统和一个线性系统来代替非线性的同态系统。分解的情形如下面所示。

分别对应声门激励信号(excitation 和 vocal tract),特征信号 是将卷积信号转化为加性信号,这时候进行Z变换,将卷积信号转化为乘积信号(疑问1),这时候得到的就是频谱,然后通过对数运算,变成加性信号,但是这个时候是对数频谱,使用不便。最后再变换回时域信号。

是在倒谱域对信号处理,常见处理方式是将语音声源信号与声道信号分离。 在倒谱域,总可以找到一个 ,当 时,声道滤波器的倒谱为0,当 时,激励的倒谱接近于0

如果想再恢复语音信号,用d所示的逆特征系统运算即可。

MFCC (Mel Frequency cepstrum coefficient),MFCC是将人耳的听觉感知特性和语音产生机制相结合,因此目前大多数语音识别系统广泛使用这种特征。

耳蜗的滤波作用是在对数频率尺度进行的,在1000Hz以下为线性,在1000Hz以上为对数,这就使得人耳对低频比高频更敏感

对频率轴不均匀划分是MFCC特征区别于前面普通倒谱特征的最重要的特点,变换到Mel域后,Mel带通滤波器组的中心频率是按照Mel刻度均匀排列的,实际应用中,MFCC计算过程如下

MFCC有效利用的听觉特性,因此改变了识别系统的性能,如果倒谱位数增加,对识别性能影响不大。但采用动态特征,误识率有20%的下降。

点评20190130:第三四次囫囵吞枣的看完MFCC,即使知道了倒谱,但最后按个离散余弦变换还是比较不能联系上,反正感觉乱乱的吧,包括差分之类的,想被打回哪门语音信号处理课上回炉了,Mark一下,始终有一天会懂其中的深意的。

所谓过程模式,指的是模式特征是一个多维(随时间变化)的随机向量,而不是一个高维的点。因为研究的对象是地震资料,所以模式数字序列可以看做一个灰色过程或随机过程,其特征也应是一个既反映内在结构,又反映变异特性的动态变化过程。该方法以地震资料为对象,用灰色系统(易德生等,1989)、模糊数学(赵振宇等,1992)、分形理论(JPang,et al,1996;王域辉等,1994)等新理论新方法,来描述储层的内在特征,以灰色识别等新技术,来综合识别裂缝发育有利地段,为进一步布置开发井位服务。

灰色过程识别的算法核心技术是:①由地震资料,通过多种数学生成变换,提取出既能反映模式的内在结构,又能反映模式间差异的多维特征矢量(过程特征),从而全面地,多方位地、动态地刻画出模式的数字特征;②针对多维过程特征的多模式、多方案的灰色过程识别算法理论及其软件设计;③多方案识别结果的人机交互综合技术,以最终获得一个可靠的、符合地质实际的评价结果;④形象直观的图示技术,使其计算结果的宏观趋势及变化状态一目了然,方便、确切地实现计算过程与地质评价解释人员的交流交互。

预测评估是以地震剖面及其变换剖面,如岩性剖面、速度剖面、VSP剖面等数据资料为基础,通过各种方法提取特征参数,用不同的方法进行多参数模式识别,评价目的层的横向变化及含油气的可能性,进而推断含油气区段。

511 预测评估的基本原则

灰色过程模式识别系统是集地质、地震、数学、计算机、人工智能等多学科知识于一体的综合型智能识别体系,但是,碳酸盐岩古潜山储层是高度非均质性的地质体,因此,无论在模式建立、特征提取或识别推断上都遵循以下四条原则:

(1)变异性原则:在特征提取时,采用时窗滑动的方法,对每一个CDP道可以提取出若干个特征向量,用以描述动态过程特征。

(2)随机性原则:可以将一个地震数据序列看成一个随机变量,同样可以作统计处理、求取子样特征参数,如均值、方差、极差等。该原则恰好与灰色理论的基本观点相符合。

(3)相似类比原则:从地质背景出发,选取适当的评估范围,绝不可太长。针对目的层,其上、下界应根据地震剖面及地质分层等成果进行标定和拾取。

(4)延续性原则:相邻CDP位置间必然存在一定程度的延续成分。

据此,一方面,模式井道的选取可以按照就近原则选取离井位置最近的CDP道,也可以选取相邻的几道组合而构成模式;另一方面,模式识别结果也可以相应地作一定长度内的平滑处理,剔除部分随机干扰。

512 预测评估的步骤

(1)确定目的层,截取目的层的剖面数据,建立评估算法的基本数据体;

(2)确定模式井道,组构评估模式数据体;

(3)特征提取:特征提取是本方法的第一个研究重点,因为特征提取的好坏将直接影响最终的评估效果。由于原始地震道是一个包括沉积、地层、构造、岩性等多种地质信息的综合响应系统,从中提取能够反映模式间特征差异的信息则是关键。

本方法从动态过程的观点出发,提出了Jacklife统计、灰色参数、模糊自相似从属度、模糊分维、几何分维等多种特征向量提取方法及计算方法。

(4)多参数多方法模式识别:模式识别是本方法的另一个研究重点。特征提取之后,要合理地“分类”和比较,根据各CDP位置数据的量化结果评估储层的变化和油(气)存在的可能性,这是关键性的一步。

513 地震特征参数的提取

所谓特征提取就是通过数学变换将地震时间序列中能反映储集特征及含油(气)可能性的信息提取出来。由于每个地震道时间序列,实际上是一个随时间而变化的动态过程,因此把它看做一个灰色过程是合理的。因而其特征生成结果,也应是一个随时间而变化的过程,即过程特征更为全面、更为合理。

设有一个地震道的时间序列为X:

储层特征研究与预测

它不仅能清楚地反映层位、构造、断层等地下地质信息,而且还包含了岩性、孔隙度、渗透率等油储特性。显而易见,特征参数提取的关键在于:如何从地震时间序列中提取出能反映储层及含油气性的特征参数。

研究前人有关特征参数提取的方法,可以看出,无论是统计参数,或是自回归系数,甚至分维数,都是对每个时间序列(即一个地震道)求取一个特征值,以代表整个序列的总特征,这种以一个参数代表一个地震道的参数提取方法称为点特征提取法。然而,这种特征参数提取方法有很大的局限性,因为每个地震道都可以看成一个随时间变化的动态随机过程,它不仅具备系统的内在结构特征,而且在不同时间段内又随地层的不同而具备不同程度、不同性质的差异。据此,应该视具体情况,选择相应的时窗长度,在该时窗内进行滑动拾取,针对每个时窗逐次提取特征参数,从而构成一个特征向量。这样,才能全面、细致地反映整个序列的总体特征,我们称之为过程特征。

地震数据体的特征提取一般有三大类,即:基于振幅的统计特征;基于功率谱、自相关、自回归的频率特征;以及基于分维、模糊数学、灰色理论的非线性特征参数。这三类参数可达几十个,但是并非所有的特征参数对所要求解决的地质问题都有效,实践证明,必须要针对不同地区、不同储层和解决不同问题,筛选出有明显反映的特征参数。本次研究的目的是直接预测溶蚀、裂缝带的分布,因此选择了反映振幅变化的统计特征、反映频率变化的自相关特征、反映更复杂组合的非线性特征(如灰色参数、模糊分维数)等19个特征参数向量,亦即:

(1)统计特征的提取

a绝对均值:

储层特征研究与预测

b最大峰值:

储层特征研究与预测

c最大谷值:

储层特征研究与预测

最大峰值、最大谷值分别表示地震序列的最大振幅和最小振幅,它们界定了总体的取值范围。

d正均值:

储层特征研究与预测

其中n′为地震序列中取值大于0的点数。

e负均值:

储层特征研究与预测

其中 m′为地震序列中取值小于0的点数;x +、x -反映了地震序列正、负振幅的平均位置。

f二分之一能量时间:

设称为地震波的总能量,则存在一个适当的 t,1< t< n,使得

储层特征研究与预测

则t称地震波的二分之一能量时间。

g正负样点比:

设 n +为地震序列中取值为正的点数,n -为地震序列中取值为负的点数,则

储层特征研究与预测

称为正负样点比。

h标准差:

储层特征研究与预测

用于描述时间序列相对平均值位置的离散程度。δ值越小,表明序列的离散程度越小,序列的取值密度越大,各取值点越靠近其平均位置。

i周波跳跃系数:

储层特征研究与预测

其中:n1代表两个相邻取值xi和xi+1由正到负的突变次数;n2代表两个相邻取值xi和xi+1由负到正的突变次数;(i=1,2,…,n-1)。

a用以描述时间序列的周期变化频率,a越大,则表明时间序列变化频率越高,因此,该特征在地震时间序列中可以反映地层变化的复杂程度。

以上介绍的9种特征参数都是时间序列的总体特征参数,估计出的是一个特征值,它们从不同角度反映了地震序列的变化特征,反映了储层储集性的细微变化。但是,地震时间序列反映的是一个地层随时间而变化的动态过程。而统计特征参数描述的是时间序列的总体特征,并没有体现时间内的细小变化。为此,胡远来教授提出运用拓宽Jacklife统计思路,采用切除任一时间段而统计估算其余部分的特征参数的方法,来提取整个时间序列的特征向量。

下面以均值为例,阐明该方法的计算过程:

a给定的时窗长度为1<l<n;

b计算

储层特征研究与预测

c取i=1,2,…n-1,即让时窗从x1逐步滑动到xn-1,计算出n-1个平均值。这种估算既可满足统计的大样本量要求,又能反映整个数列的动态特征,将更有利于识别类比。

(2)自相关特征的提取

自相关特征即地震反射波的自相关函数的一些特征参数,实践证明,它们对地震反射波的波形微细变化有较敏感的反映,能反映地震记录沿时间方向的重复性状态。设地震波时间序列为 X={x1,x2,…,xn},则 X 的自相关函数r 为:

储层特征研究与预测

自相关函数r不仅是一个随时间而变化的函数,而且是一个振幅随时间增长而衰减的周期函数,其中周期为A0=r(0)为最大峰值,A1、A2、A3分别为三个过零点时间,则可以取得如下6个自相关特征参数:

a第二峰值与最大峰值比:S1=A1/A0;

b第三峰值与最大峰值比:S2=A2/A0;

c第四峰值与最大峰值比:S3=A3/A0;

d主瓣宽度:S4=2t1;

e二瓣宽度:S5=t2-t1;

f三瓣宽度:S6=t3-t2。

(3)灰色特征的提取

基本思路是:将地震时间序列看做一个本征灰色系统,从而建立起系统的灰色模型,然后从模式识别的目的出发,通过数学变换,组构一个能够最大限度地反映模式之间差异的灰色特征向量。

该方法的目的在于:通过预测模型 GM(1,1)的建立,确定辨识参数-a 和-u。在灰色理论中,称-a 为发展系数,-u/-a 为调节项。两者刻画了模型的系统结构,反映了系统的总体变化趋势,进而,可以用来描述储层特征模式,或含油气与否的地震道序列,继而从模式识别的角度出发,使得总体特征对于不同的模式而言,表现出来的差异应越大越好;对于相同或相似的模式而言,表现出来的差异应越大越好;对-a、-u 进行组合构造,提取灰色特征。

研究发现-a 数值虽小,但较灵敏,序列的微小变化则会引起-a 的剧烈波动;而调节项-u/-a 的变化则比较平缓。

为此,针对-a 和-u 提出灰色特征向量的构造方法如下:

设有地震时间序列 X=(x1,x2,x3,…,xn),确定特征提取的滑动时窗长度 1,1≪n,对于任意一个滑动时窗 i(i=1,2,…,n-l);

a求取时窗 i 下的GM(1,1)的辨识参数-ai和-ui;

b将两者作规一化处理,使之成为[0,1]之间的灰数;

c构造 ai=f(-ai,-ui),使得 ai∈[0,1];

则有ai(a1,a2,…,an-1),称ai为灰色特征向量。

(4)模糊特征的提取

模糊特征是指由分维特征拓广引申出来的模糊分维及模糊自相似从属度特征。分维是分形特征的一个定量描述参数,是刻画复杂的、不规则几何图形的一个有力工具。可以提取三种特征参数。

a关联维数

关联维数

储层特征研究与预测

其中

储层特征研究与预测

是相空间中s、t两点之间的距离dst小于r的概率;r为指定距离的上限;H为一个Heaviside函数,即

储层特征研究与预测

b模糊分维

模糊分维是分维的一种拓广。几何分维认为一个复杂图形的整体与部分之间存在自相似性,而模糊分维(以下简记 F-分维)则认为自相似不一定存在,只存在模糊自相似,是指许多复杂结构,实际上只是某种程度上的自相似,这种现象可以用一个模糊集来表示,从这种观点出发计算的分维数称 F-分维。

若定义相似程度(隶属度)为ust则C(r)可修正为

储层特征研究与预测

c模糊自相似从属度

冯德益教授从模糊数学的观点出发,采用模糊分维的定义思路,给出了模糊自相似从属度的概念。若原标度为1,新标度Lj,则称rj=1/Lj为模糊自相似比。倘若在自相似比rj下,第i个图像与原图像的相似度为ui,则整个结构的模糊自相似从属度(以下简称F—自相似从属度)可定义为:

储层特征研究与预测

式中;na为相似性测定的次数;n 为选取的 F-自相似个数。

我们研究分维、F-分维、F-自相似从属度是用于提取地震资料表征的储层特征和含油气特征。由于一个地震序列反映的是若干米厚的地下地质体的数字特征,所反映的地下地质信息十分丰富,其中包括了若干厚薄不一的储层和非储层。一个储层中又可能包含了数个更小的岩层,因此若把若干米厚的地城序列曲线看做复杂图形的集合体,分析其分维、F-分维、F-自相似从属度特征,这就太粗了,不能反映细层的差异。我们认为应取一定厚度的曲线作为整体(这个厚度称为逻辑尺或逻辑时窗 Q),用上述公式计算三个参数,然后滑动时窗,再计算三个参数,如此继续下去,就可以得到三条特征曲线,它能动态地、全面地反映储层的内在规律性,实现储层的分类识别。

另外,因为地震序列从上到下的变化与地下地质的变化特征是密切相关的,因此,在这里应把它看作一个有序的灰色自相似结构来计算。

514 灰色模式识别

5141 灰色关联识别

灰色模式识别是将一个模式X看做一个灰色过程,其数字特征是一个灰数序列:

储层特征研究与预测

那么,标准模式i:

储层特征研究与预测

与待评估模式j:

储层特征研究与预测

之间的相似性度量则用灰关联rij来表征。倘若已知标准模式Xi,i=1,2,…,m,与未知待辨识模式Xj的灰关联度为rij时,则其识别准则如下:

储层特征研究与预测

则模式应划归第K类。

灰关联强调的是系统过程的动态发展变化,它是根据模式特征因素间发展变化趋势的相似或相异来衡量模式间的相似程度。这种系统分析方法对样本量大小没有特殊的要求,也不像统计识别那样需要以某种统计分布为前提,因此,适用范围广。

5142 灰关联度

灰关联度计算是灰色模式识别的关键之一。关联度是度量待识别模式(向量)曲线(Xj)与标准模式曲线(Xi,i=1,2,…,m)的相似程度的一个定量值,其定义可以有多种,现采用四种。

a经典关联度

其定义如下:

储层特征研究与预测

式中:

储层特征研究与预测

0≤a≤1称为分辨系数,越小分辨率越高,一般取a=05,显然0≤rij≤1;rij越大,表明j模式与i模式的相似程度越高,其几何意义是两条曲线越相似。

b模糊关联度

为了顺应模式变化,增强系统的适应能力,引入了模糊数学的观点,不难看出:“灰”与“模糊”只是“不确定”的两种形式。

这里选用模糊算子:极大∨和极小∧,便得出模糊关联度,记作fij。

设:

储层特征研究与预测

则有:

储层特征研究与预测

这样一来模糊关联度的灵敏度较之经典灵敏度降低了,也就是说,反映模式间变化的灵敏度降低了,相似性度量有一定的模糊性。

c组合关联度

经典关联度着重描述模式曲线间的几何形态,即变化趋势越接近,关联度值越大。但针对某些过程(如地震道时间序列),不仅要考虑它的位置变化,而且还应考虑其变化速率、速度差和加速度差。由此,该方法引入了一种新的关联度—组合关联度,记作Zij。

设:

储层特征研究与预测

则有:

储层特征研究与预测

组合关联度是灰模式(曲线)变化过程中的位移差、速度差和加速度差的合成,增强了模式形态外变差的相似性,将更有利于模式对比。

d距离关联度

在经典关联度的计算中,使用了全局最小、最大作规一化处理,使其结果在0到1之间,在多模式情况下,rij不能满足对称性,因此不可以用于模式的聚类分析。然而,在建模之前,又往往需要模式的聚类分析。那么,为了给建模提供依据,便引入了距离关联度的概念。

储层特征研究与预测

其中:d0是一个适当选取的常量,但要满足

储层特征研究与预测

5143 初始化变换

在关联分析中,如果变量列间的量纲不统一,则计算出的关联度难以正确地反映变量列间的过程变化特征,使解失真。因此,往往要对变量列(即原始数据列)先进行初始化变换,消除量纲影响,使各变量处于相同地位,具有等效性。

初始化变换有很多种,本系统采取的是初值化,极大化,极小化,区间化或不变换等五种。

若设变换前的原始数到 X={x(1),x(2),…,x(n)},变换后的结果数列为 Y={y(1),y(2),…,y(n)},则五种变换算法公式为:

① 初值化变换

储层特征研究与预测

②极大化变换

储层特征研究与预测

其中

储层特征研究与预测

③极小化变换

储层特征研究与预测

其中

储层特征研究与预测

④区间化变换

储层特征研究与预测

⑤不变换

储层特征研究与预测

显然(1)~(4)种变换都是无量纲化变换方法,否认原始数列的单位是什么,变换后都消除了单位大小的影响,特别是区间化变换,不但消除了量纲,而且使各变量列的数量级都统一在0到1之间。

5144 灰色模式识别策略

该系统针对每个地震道提取19个特征向量,从灰色理论的基本观点出发,将每一个特征向量看成该模式的一个灰色序列,从而构成一个多参数序列的灰色模式识别系统,其基本策略是:

(1)以四种关联度构成一个多参数的自动优化识别系统。自动优化指的是:系统通过试算,在确定的优选目标下,选取最适合本问题的方案,来计算推断整个地震剖面的储层裂缝的发育概率;

(2)通过学习训练,求取多参数序列在模式识别中的贡献,由各参数的贡献大小,来适当组构识别的数学模式,用于全剖面各道的外推识别。

(3)由于每一类都可能存在多个已知模式(井旁道),因此,模式的建立可以采取两种策略:或者针对每一类选取一个有代表性的、具有普遍意义的模式井道作为模型,称为单井模式;或者根据每一类中各模式道的微小差异,取其加权平均作为模型,称为组合模式。

5145 灰色模式识别结果

(1)灰色过程识别的多方案设计

由于模式的相似性度量是一个多维灰关联系数,根据灰关联理论,我们可以将原始输入序列作不同的初始化变换和采用不同的灰关联定义。因此,在实际计算时,就可以设计多种不同的计算方案,以求从多角度、多对比技术方面获取更有效的结果。

本算法可以选取4种不同的初始化变换、4种不同的灰关联定义,即可以有4×4=16种算法方案。为便于使用掌握,本算法软件,设计出了一个自动优选机制,自动优选出最优的前三种方案作数字模型及外推识别计算。

优选的原则是分辨率高,回判及检测效果好。

(2)多结果的综合技术

对任一测线剖面,都可以获得几个计算结果,如何综合选择,求得最终结果,这是十分重要的。一个好的结果应是:

①回判及检测的正确率应当高;

②横向的连续性应当好,因为地质体尽管是非均质的,各向异性的,但在一个小范围内,在宏观上应该有一定的延续性。

③不只看单测线结果,还应看区域结果,从区域构造,区域地质背景来检验结果。因此,这就需要与评价解释人员进行交流,实施交互选择。

通过反复计算,反复交互,最终才能获得满意结果。决不能把它看成一个单纯的计算问题,它是一个数学与地质紧密结合的,系统的,科学的研究问题。

(3)图示技术

为了使输出结果形象、直观,特别是使结果的交互选择能快速、顺利地实现,该算法设计出了测线时间剖面图及平面预测结果图,可以一目了然地,观察整个测线的结果变化状态、储层走势,模式井位置,及预测分类级别等。

用这个举例子,BR是BIRTH RATE人口出生率, LNPCGDP是对PCGDP取对数, PCGDP 是PER CAPITA, GDP人均GDP。

首先分析图7中第一个脉冲响应函数曲线,本期内LNPCGDP受到一个冲击后,BR在前2期的响应函数取钱呈现上升状态,第2期达到峰值079,而后开始逐步回落到第7期的低值003,继而保持较为平稳的状态;这说明经济进步在很短的时期内可以促进人口出生率提高,但随着时间的推演人口出生率提高速度回落。

其次分析图7中第二个脉冲响应函数曲线,在本期给BR一个冲击,LNPCGDP会受到长期的负向冲击,LNPCGDP在前4期不断上升到达010,而后基本维持稳定在011左右;这说明我国在此阶段内人口的增加对经济发展产生了阻挠作用。

扩展资料:

辨识脉冲响应函数的方法分为直接法、相关法和间接法。

①直接法:将波形较理想的脉冲信号输入系统,按时域的响应方式记录下系统的输出响应,可以是响应曲线或离散值。

②相关法:由著名的维纳-霍夫方程得知:如果输入信号u(t)的自相关函数R(t)是一个脉冲函数kδ(t), 则脉冲响应函数在忽略一个常数因子意义下等于输入输出的互相关函数,即 h(t)=(1/k)Ruy(t)。实际使用相关法辨识系统的脉冲响应时,常用伪随机信号作为输入信号。

由相关仪或数字计算机可获得输入输出的互相关函数Ruy(t),因为伪随机信号的自相关函数 R(t)近似为一个脉冲函数,于是h(t)=(1/k)Ruy(t)。这是比较通用的方法。也可以输入一个带宽足够宽的近似白噪声信号,得到h(t)的近似表示。

③间接法:可以利用功率谱分析方法,先估计出频率响应函数H(ω), 然后利用傅里叶逆变换将它变换到时域上,于是便得到脉冲响应h(t)。

参考资料:

——脉冲响应函数

脉冲响应指的是:在一个输入上施加一个脉冲函数引起的时间响应。

单位脉冲响应(Unit impulse response)系统对单位脉冲输入的响应。也称作记忆函数。脉冲响应确定一个线性系统的特性,包含有与频率域中的传输函数相同的信息,而传输函数是脉冲响应的拉普拉斯变换。线性系统的输出由系统的输入与它的脉冲响应的卷积给出。

单位脉冲响应是指一个无穷大的瞬时冲激,并且由于其在时间轴上的积分为1,而t又趋向于零,所以单位脉冲响应的大小应该是无穷大,但是要知道的是,无穷大量也有大小比较,所以单位脉冲响应可以用一个系数对之进行量度。

扩展资料

1、系统动态性能分析

动态性能是系统性能的一个十分重要的指标,通常用阶跃信号作用来测定系统的动态性能。一般认为,阶跃信号对于系统来说是十分严峻的工作状态,因为阶跃信号中存在跃断点(不连续点)。

针对零初始状态系统在单位阶跃输入下的响应情况,定义了一系列动态性能指标,用以评判系统的动态性能,如超调量、衰减比、上升时间、调节时间、峰值时间等等。

2、建立系统响应模型

对于典型的输入信号,如冲激信号、阶跃信号、斜坡信号等,都建立有响应模型(在此即单位阶跃响应模型)。根据模型,可以快速判断出实际系统的动态性能指标参数,只需要代入实际系统的相关测量参数,就可以定量分析其性能指标。

——脉冲响应

——单位脉冲响应

尽管TD-LTE的关键技术用OFDM技术,但其中也存在不足,归纳为三点:PARP较高、受频率偏差的影响、受时间偏差的影响。下面简单地介绍一下OFDM系统降低PAPR 的技术。 OFDM包络的不稳定性可以用PAPR 来表示。PAPR 越大, 系统包络的不稳定性越大。因此要改善系统的性能, 就要设法减少PAPR, 而PAPR 与传输序列的自相关函数有关。围绕如何降低OFDM系统的PAPR问题, 国内外学者已做了大量的研究工作, 其主要算法可以归纳为以下三类。一、信号预畸变技术 信号预畸变技术的中心思想是在信号送到放大器之前, 首先经过非线性处理对有较大峰值功率的信号进行预畸变, 使其不会超出放大器的动态变化范围, 从而避免较大PAPR 的出现。该技术包括以下7 种方法:1、限幅法 限幅法中矩形窗的引入会对原信号的频谱产生影响,从而引起新的带外噪声, 降低频谱效率。并且由于该法是一种非线性变化, 会产生严重的带内失真, 从而降低误码率性能, 导致系统性能下降。为了克服由于限幅导致的误码性能的恶化, 可以采用有效的信道编解码技术。2、加窗法 这种方法采用了频谱特性好于矩形窗的窗函数, 但需要在上采样后的较高速率下对信号进行处理, 因此实现较难, 且会影响信号频谱特性。3、加校正函数法 加校正函数法指用校正函数来处理OFDM信号, 以消除OFDM的幅度峰值, 而由校正函数引起的频带外干扰为零或忽略不计。其中校正函数又分为乘性校正函数和加性校正函数两种。4、加权多载波调制法 加权多载波调制法是指在FFT前用Gaussian或者Hamming 窗函数加权输入信号来降低PAPR。5、载波抑制峰值法 载波抑制峰值法的主要思想是当OFDM信号的峰值功率出现时, 将OFDM一些子载波不用来传送数据, 而是传送一些能抑制和抵消峰值的、设计好的信号。通常建议使用不同的频段作为这个载波的频率。这个技术的优点是既不会降低系统的SNR( 信噪比) , 也不会引入带外干扰, 缺点是降低了系统的数据速率, 增加了系统的复杂性。6、压缩扩展法 传统扩展法的主要思想是提升信号中的低幅度值而保持其峰值幅度, 以此来提升信号的平均功率, 从而达到降低PAPR 的目的。然而由此增加了系统的平均发射功率, 使符号的功率值更加接近功率放大器的非线性变换区域, 容易造成信号失真。因此提出了一种改进的压缩扩展变换方法, 这种方法中, 对大功率发射信号进行了压缩, 而把小功率信号进行了放大, 从而可以使发射信号的平均功率相对保持不变。这样不但可以减小系统的PAPR, 而且还可以使小功率信号抗干扰的能力有所增强。次方法虽然计算复杂度低, 但是放大器输入信号的平均功率却增加了, 从而对非线性失真更敏感。因此又有人提出了压扩转换法,提出的压缩扩展法均分别借鉴了语音信号信源编码中非均匀量化方法的μ律和A 律的压缩扩展表达式, 这些方法在发送端对信号进行压缩或扩大, 使PAPR 降低, 而在接收端能做到几乎不损伤信号的恢复, 实现的计算复杂度也较低。7、预畸变和畸变补偿法 预畸变是指在发送端对未进入放大器的信号进行与放大器畸变特性相反的预畸变, 以减少信号在通过放大器后的畸变。畸变补偿技术是指在OFDM系统的接收端加一个补偿器用于补偿和修正被畸变的信号。这两种技术在实际应用中都会大大增加系统的复杂性。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13494707.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存