高等数学问题。不连续的函数,比如有跳跃间断点,它是否可积? 如果它可积,那它的变上限积分是否连续?

高等数学问题。不连续的函数,比如有跳跃间断点,它是否可积? 如果它可积,那它的变上限积分是否连续?,第1张

有跳跃间断点的函数的变上限积分函数连续的。变上限积分函数应该出现的是类似于|x|这样分段的函数,分段点连续,但是不可导的情况。

所以如果是有第二类间断点,如无穷间断点,震荡间断点,是有可能(但也只是有可能,不是一定)不可积。而如果是有限个第一类(无论是跳跃间断点,还是可去间断点),都必然是可积的。

函数可积的充分条件:

1、定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

2、定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。

3、定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。

可积函数的有界

任何一个可积函数一定是有界的,但是需要注意的是,有界函数不一定可积。在其定义域上的每一点都不连续的函数。狄利克雷函数是处处不连续函数的一个例子。

若f(x)为一函数,定义域和值域都是实数,若针对每一个x,都存在ε>0 ,使得针对每一个δ>0,都可以找到y,使下式成立,则f(x)为处处不连续函数:0< |x−y|<δ 且|f(x)−f(y)|≥ε。

您好这道题由我为您解答 判断函数是否连续方法:求出某点左右极限,如果左极限等于右极限且等于函数在此处的函数值,则函数在此点连续,如果任意点在考察的范围内都满足这个条件,则该函数是连续的。

函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的,对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有lim(x->x0) f(x)=f(x0),则称函数f在x0点连续。如果定义在区间I上的函数在每一点x∈I都连续,则说f在I上连续,此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。如果对我的回答感到满意请你为我点个赞 谢谢

连续性的条件。

1、在x=x0处有定义。本题中x=1时,f(1)=1-1=0,满足。

2、当x->x0+和x0-时极限值相等。

x->1-时,limf(x)=x-1=1-1=0,

limf(x)=f(1)

x->1+时,limf(x)=2-x=2-1=1,

limf(x)≠f(1)

因为左右侧极限不相等,

所以不连续,选D。

答案:

解析:

由连续函数的定义知道,函数f(x)在点x0处连续,必须同时满足(1)函数f(x)在x=x0处有定义,(2)这三个条件,否则函数f(x)在x0处不连续,也就是x0为函数f(x)的不连续点.由于初等函数在定义域内连续,因此初等函数的不连续点一定不在定义域内.函数的定义域为{x|x≠0且x≠1}∴ x=0和x=1是函数的不连续点.

提示:

由基本初等函数(高中阶段所学过的幂函数、指数函数、对数函数、三角函数)和常数经过有限次四则运算和有限次函数的复合而得到的函数,统称为初等函数.初等函数在定义域内都是连续的,所以初等函数的不连续点一定在定义域之外.函数与是两个不同的函数,前者的定义域是{x|x≠1且x≠2},后者的定义域是{x|x≠2},因此,不可将原来函数表达式约分化简后再求不连续点.

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/12159396.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-21
下一篇2023-05-21

发表评论

登录后才能评论

评论列表(0条)

    保存