一、呼吸中枢与呼吸节律的形成
呼吸中枢是指中枢神经系统内产生和调节呼吸运动的神经细胞群。多年来,对于这些细胞群在中枢神经系统内的分布和呼吸节律产生和调节中的作用,曾用多种技术方法进行研究。如早期的较为粗糙的切除、横断、破坏、电刺激等方法,和后来发展起来的较为精细的微小电毁损、微小电刺激、可逆性冷冻或化学阻滞、选择性化学刺激或毁损、细胞外和细胞内微电极记录、逆行刺激(电刺激轴突,激起冲动逆行传导至胞体,在胞体记录)、神经元间电活动的相关分析以及组织化学等方法。有管些方法对动物呼吸中枢做了大量的实验性研究,获得了许多宝贵的资料,形成了一些假说或看法。
(一)呼吸中枢
呼吸中枢分布在大脑皮层、间脑、脑桥、延髓和脊髓等部位。脑的各级部位在呼吸节律产生和调节中所起作用不同。正常呼吸运动是在各级呼吸中枢的相互配合下进行的。
1.脊髓 脊髓中支配呼吸肌的运动神经元位于第3-5颈段(支配膈肌)和胸段(支配肌间肌和腹肌等)前角。很早就知道在延髓和脊髓间横断脊髓,呼吸就停止。所以,可以认为节律性呼吸运动不是在脊髓产生的。脊髓只是联系上(高)位脑和呼吸肌的中继站和整合某些呼吸反射的初级中枢。
2.下(低)位脑干 下(低)位脑干指脑桥和延髓。横切脑干的实验表明,呼吸节律产生于下位脑干,呼吸运动的变化因脑干横断的平面高低而异。
在动物中脑和脑桥之间进行横切,呼吸无明显变化。在延髓和脊髓之间横切(D平面),呼吸停止。上述结果表明呼吸节律产生于下位禽干,上位脑对节律性呼吸不是必需的。如果在脑桥上、中部之间横切(B平面),呼吸将变慢变深,如再切断双侧迷走神经,吸气便大大延长,仅偶尔为短暂的呼气所中断,这种形式的呼吸称为长吸呼吸。这一结果是提示脑桥上部有抑制吸气的中枢结构,称为呼吸整中枢;来自肺部的迷走传入冲动也有抑制吸气的作用,当延髓失去来自这两方面对吸气活动的抑制作用后,吸气活动不能及时中断,便出现长吸呼吸。再在脑桥和延髓之间横切(C平面),不论迷走神经是否完整,长吸式呼吸都消失,而呈喘息样呼吸,呼吸不规则,或平静呼吸,或两者交替出现。因而认为脑桥中下中有活化吸气的长吸中枢;单独的延髓即可产生节律呼吸。孤立延髓的实验进一步证明延髓可独立地产生节律呼吸。于是在20-50年代期间形成了三级呼吸中枢理论;脑桥上部有呼吸调整中枢,中下部有长吸中枢,延髓有呼吸节律基本中枢。后来的研究肯定了早期关于延髓有呼吸节律基本中枢和脑桥上部有呼吸调整中枢的结论,但未能证实脑桥中下部存在着结构上特定的长吸中枢。
近年来,用微电极等新技术研究发现,在中枢神经系统内有的神经元呈节律性放电,并和呼吸周期相关,这些神经元被称为呼吸相关神经元或呼吸神经元。这些呼吸神经元有不同类型。就其自发放电的时间而言,在吸气相放电的为吸气神经元,在呼气相放电的为呼气神经元,在吸气相放电并延续至呼气相的为吸气-呼气神经元,在呼气相放电并延续到吸气相者,为呼气-吸气神经元,后两类神经元均系跨时相神经元。
在延髓,呼吸神经元内主要集中在背侧(孤束核的腹外侧部)和腹侧(疑核、后疑核和面神经后核附近的包氏复合体)两组神经核团内,分别称为背侧呼吸组(dorsal respiratory group,DRG)和腹侧呼吸组(ventral respiratory group,VRG)。背侧呼吸组的神经元轴突主要交叉到对侧,下行至脊髓颈段,支配膈运动神经元。疑核呼吸神经元的轴突由同侧舌咽神经和迷走神经传出,支配咽喉部呼吸辅助肌。后疑核的呼吸神经元绝大部分交叉到对侧下行,支配脊髓肌间内、外肌和腹肌的运动神经元,商品化纤维也发出侧支支配膈肌的运动神经元。包氏复合体主要含呼气神经元,它们的轴突主要与背侧呼吸组的吸气神经元形成抑制性联系,此外也有轴突支配脊髓的膈运动神经元。
由于延髓呼吸神经元主要集中在背侧呼吸组和腹侧呼吸组,所以曾推测背侧呼吸组和腹侧呼吸组是产生基本呼吸节律的部位。可是,后来的某些实验结果不支持这一看法。有人用化学的或电解的毁损这些区域后,呼吸节律没有明显变化,这些结果提示背侧呼吸组和腹侧呼吸组可能不是呼吸节律唯一发源地,呼吸节律可能源于多个部位,产生呼吸节律的神经结构相当广泛,所以不容易因局灶损害而丧失呼吸节律。
在脑桥上 部,呼吸神经元相对集中于臂旁内侧核和相邻的Kolliker-Fuse(KF)核,合称PBKF核群。PBKF和延髓的呼吸神经核团之间有双向联系,形成调控呼吸的神经元回路。在麻醉猫,切断双侧迷走神经,损毁PBKF可出现长吸,提示早先研究即已发现的呼吸调整中枢乃位于脑桥的BPKF,其作用为限制吸气,促使吸气向呼气转换。
3.上位脑 呼吸还受脑桥以上部位的影响,如大脑皮层、边缘系统、下丘脑等。
大脑皮层可以随意控制呼吸,发动说、唱等动作,在一定限度内可以随意屏气或加强加快呼吸。大脑皮层对呼吸的调节系统是随意呼吸调节系统,下位脑干的呼吸调节系统是自主节律呼吸调节系统。这两个系统的下行通路是分开的。临床上有时可以观察到自主呼吸和随意呼吸分离的现象。例如在脊髓前外侧索下行的处主呼吸通路受损后,自主节律呼吸甚至停止,但病人仍可进行随意呼吸。患者靠随意呼吸或人工呼吸来维持肺通气,如未进行人工呼吸,一旦病人入睡,可能发生呼吸停止。
(二)呼吸节律形成的假说
呼吸节律是怎样产生的,尚未完全阐明,已提出多种假说,当前最为流行的是局部神经元回路反馈控制假说。
中枢神经系统里有许多神经元没有长突起向远处投射,只有短突起在某一部位内形成局部神经元回路联系。回路内可经正反馈联系募集更多神经元兴奋,以延长兴奋时间或加强兴奋活动;也可以负反馈联系,以限制其活动时间或终止其活动。平静呼吸时,由于吸气是主动的,所以许多学者更多地是去研究吸气中如何发生的,又如何转变为呼气的。有人提出中枢吸气活动发生器和吸气切断机制(inspiratory off-switch mechanism)的看法,认为在延髓有一个中枢吸气活动发生器,引发吸气神经元呈斜坡样渐增性放电,产生吸气;还有一个吸气切断机制,使吸气切断而发生呼气。在中枢吸气活动发生器作用下,吸气神经元兴奋,其兴奋传至①脊髓吸气肌运动神经元,引起吸气,肺扩张;②脑桥臂旁内侧核,加强其活动;③吸气切断机制,使之兴奋。吸气切断机制接受来自吸气神经元,脑桥背旁内侧核,和肺牵张感觉器的冲动。随着吸气相的进行,来自这三方面的冲动均逐渐增强,在吸气切断机制总合达到阈值时,吸气切断机制兴奋,发出冲动到中枢吸气活动发生器或吸气神经元,以负反馈形式终止其活动,吸气停止,转为呼气。切断迷走神经或毁损脑桥臂旁内侧核或两者,吸气切断机制达到阈值所需时间延长,吸气因面延长,呼吸变慢。因此,凡可影响中枢吸气活动发生器、吸气切断机制阈值或达到阈值所需时间的因素,都可影响呼吸过程和节律。
关于呼气如何转入吸气,呼吸加强时呼气又如何成为主动的,目前了解料少。
二、呼吸的反射性调节
呼吸节律虽然产生于脑,但其活动可受来自呼吸器官本身以及骨骼肌、其它器官系统感觉器‘传入冲动的反射性调节,下述其中的一些重要反射
(一)肺牵张反射
1868年Breuer和Hering发现,在麻醉动物肺充气或肺扩张,则抑制吸气;肺放气或肺缩小,则引起吸气。切断迷走神经,上述反应消失,所以是反射性反应。由肺扩张或肺缩小引起的吸气抑制或兴奋的反射为黑-伯反射(Hering-Breuer reflex)或肺牵张反射。它有两种成分:肺扩张反射和肺缩小反射。
1.肺扩张反射 是肺充气或扩张时抑制吸气的反射。感觉器位于从气管到细支气管的平滑肌中,是牵张感受器,阈值低,适应慢。当肺扩张牵拉呼吸道,使之也扩张时,感觉器兴奋,冲动经迷走神经走神经粗纤维传入延髓。在延髓内通过一定的神经联系使吸气切断机制兴奋,切断吸气,转入呼气。这样便加速了吸气和呼气的交替,使呼吸频率增加。所以切断迷走神经后,吸气延长、加深,呼吸变得深而慢。
有人比较了8种动物的肺扩张反射,发现有种属差异,兔的最强,人的最弱。在人体,当潮气量增加至800ml以上时,才能引起肺扩张反射,可能是由于人体肺扩张反射的中枢阈值较高所致。所以,平静呼吸时,肺扩张反射不参与人的呼吸调节。但在初生婴儿,存在这一反射,大约在出生4-5天后,反射就显著减弱。病理情况下,肺顺应性降低,肺扩张时使气道扩张较大,刺激较强,可以引起该反射,使呼吸变浅变快。
2.肺缩小反射 是肺缩小时引起吸气的反射。感受器同样位于气道平滑肌内,但其性质尚不十分清楚。肺缩小反向在较强的缩肺时才出现,它在平静呼吸调节中意义不大,但对阻止呼气过深和肺不张等可能起一定作用。
(二)呼吸肌本体感受性反射
肌梭和腱器官是骨骼肌的本体感受器,它们所引起的反射为本体感受性反射。如肌梭受到牵张刺激时可以反射性地引起受刺激肌梭所在肌的收缩,为牵张反射,属本体感受性反射。呼吸肌也有牵张反射的主要依据是:在麻醉猫,切断双侧迷走神经,颈7横断脊髓,牵拉膈肌,膈肌肌电活动啬;切断动物的胸脊神经背根,呼吸运动减弱;人类为治病需要曾做类似手术,术后相应呼吸肌的活动发生可恢复的或可部分恢复的减弱。说明呼吸肌本体感受性反射参与正常呼吸运动的调节,在呼吸肌负荷改变时将发挥更大的作用。但是,这些依据不是无懈可击的。因为背根切断术不仅切断了本本感受器的传入纤维,也切断了所有经背根传入的其它感受器的传入纤维。近来的研究表明来自呼吸肌其它感受器的传入冲动也可反射性地影响呼吸。因此,对呼吸肌本体感受性反射应做更深更深入细致的研究,如研究分别兴奋不同感受器或传入纤维时对呼吸的效应。
(三)防御性呼吸反射
在整个呼吸道都存在着感受器,它们是分布在粘膜上皮的迷走传入神经末梢,受到机械或化学刺激时,引起防御性呼吸反射,以清除激惹物,避免其进入肺泡。
1.咳嗽反射 是常见的重要防御反射。它的感受器位于喉、气管和支气管的粘膜。大支气管以上部位的感受器对机械刺激敏感,二级支气管以下部位的对化学刺激敏感。传入冲动经迷走神经传入延髓,触发一系列协调的反射反应,引起咳嗽反射。
咳嗽时,先是短促或深吸气,接着声门紧闭,呼气肌强烈收缩,肺内压和胸膜腔内压急速上升,然后声门突然打开,由于气压差极大,气体更以极高的速度从肺内冲出,将呼吸道内异物或分泌物排出。剧烈咳嗽时,因胸膜腔内压显著升高,可阻碍静脉因流,使静脉压和脑脊液压升高。
2.喷嚏反射 是和咳嗽类似的反射,不同的是:刺激作用于鼻粘膜感受器,传入神经是三叉神经,反射效应是腭垂下降,舌压向软腭,而不是声门关闭,呼出气主要从鼻腔喷出,以清除鼻腔中的刺激物。
(四)肺毛细血管旁(J-)感受器引起的呼吸反射
J-感受器位于肺泡毛细血管旁,在肺毛细血管充血、肺泡壁间质积液时受到刺激,冲动经迷走神经无髓C纤维传入延髓,引起反射性呼吸暂停,继以浅快呼吸,血压降低,心率减慢。J-感受器在呼吸调节中的作用尚不清楚,可能与运动时呼吸加快作肺充血、肺水肿时的急促呼吸有关。
(五)某些穴位刺激的呼吸效应
针刺人中窕可以急救全麻手术过程中出现的呼吸停止。针刺动物人中可以使膈肌呼吸运动增强,电刺激家兔人中对膈神经和管髓呼吸神经元电活动有特异性影响。有人观察到在麻醉意外事件发生呼吸暂停时,刺激素可以兴奋呼吸。穴位的呼吸效应及其机制值得探讨。
(六)血压对呼吸的影响
血压大幅度变化时可以反射性地影响呼吸,血压升高,呼吸减弱减慢;血压降低,呼吸加强加快。
呼吸肌收缩、舒张所造成的胸廓的扩大和缩小称为呼吸运动。呼吸运动是一种节律性运动,而且,呼吸的频率和深度还能随内、外环境条件的改变而改变,以适应环境条件的变化,这都依靠神经系统的调节来实现。
(1)呼吸中枢的调节
中枢神经系统内产生和调节呼吸运动的神经细胞群,称为呼吸中枢。它们分布于大脑皮质,脑干和脊髓等各级部位,对呼吸运动起着不同的调节作用。1)呼吸肌的运动神经元位于脊髓前角,它们发出膈神经和肋间神经支配膈肌和肋间肌的活动。脊髓不能产生节律性呼吸运动,它只是上位脑控制呼吸肌的中继站以及整合某些呼吸反射的初级中枢。2)延髓有吸气神经元和呼气神经元,主要集中在腹侧和背侧两组神经核团内,以控制吸气肌和呼气肌的活动。3)在脑桥前部有呼吸调整中枢,该中枢的神经元与延髓的呼吸区之间有双向联系,其作用是限制吸气,促使吸气向呼气转换。正常呼吸节律是脑桥和延髓呼吸中枢共同活动形成的。4)上位脑虽不是形成节律性呼吸所必须的部位,但正常人体的呼吸要受下丘脑、边缘系统、大脑皮层等高位中枢的影响。
(2)呼吸反射性调节
1)肺牵张反射:肺扩张引起吸气被抑制和肺缩小引起吸气的反射,称肺牵张反射,包括肺扩张反射和肺缩小反射。吸气时肺扩张到一定程度,刺激位于气管到细支气管平滑肌内的肺牵张感受器,冲动沿迷走神经传入延髓,切断吸气,促使吸气转为呼气。在动物这一反射较明显,如果切断动物的两侧迷走神经,可见吸气延长,呼吸加深变慢。肺缩小反射对平静呼吸的调节意义不大,对阻止呼气过深和肺不张等可能起一定作用。
2)呼吸肌本体感受性反射:呼吸肌与其他骨骼肌一样,当受到牵拉时,本体感受器(肌梭)受刺激,可反射性引起呼吸肌收缩,此即呼吸肌本体感受性反射。,呼吸肌本体感受性反射参与正常呼吸运动的调节。当运动或气道阻力增大时,可反射性地引起呼吸肌收缩增强,在克服气道阻力上起重要作用。
3)防御性呼吸反射:咳嗽反射:是喉、气管或支气管粘膜受到机械或化学刺激时所引起的一种反射,可将呼吸道内的异物或分泌物排出,具有清洁、保护和维护呼吸道通畅的作用。但长期和剧烈的咳嗽可导致肺气肿;也可使胸膜腔内压显著升高而阻碍静脉血回流,致使静脉压和脑脊液压升高。喷嚏反射:是由鼻粘膜受刺激引起的反射活动,其作用在于清除鼻腔中的刺激物。
4)化学反射性呼吸反射:调节呼吸活动的化学感受器,依其所在部位的不同分为外周化学感受器和中枢化学感受器:前者是指颈动脉体和主动脉体,冲动分别沿窦神经和迷走神经传入呼吸中枢;后者位于延髓腹外侧浅表部位,Ⅸ、Ⅹ脑神经根附近,能感受脑脊液中H+的刺激,并通过神经联系,影响呼吸中枢的活动。
a.CO2对呼吸的调节CO2是调节呼吸最重要的生理性体液因素,动脉血中一定水平的Pco2是维持呼吸和呼吸中枢兴奋性所不可缺少的条件。当吸入气中CO2含量增加到2%时,呼吸加深;增至4%时,呼吸频率也增快,肺通气量可增加1倍以上。由于肺通气量的增加,肺泡气和动脉血Pco2可维持在接近正常水平。当吸入气中CO2含量超过7%时,肺通气量不能作相应增加,导致肺泡气、动脉血Pco2陟升,CO2堆积,使中枢神经系统,包括呼吸中枢的活动受抑制而出现呼吸困难、头昏、头痛甚至昏迷。
CO2对呼吸的调节作用是通过刺激中枢化学感受器和外周化学感受器两条途径兴奋呼吸中枢实现的,但以中枢化学感受器为主。研究表明,对中枢化学感受器的有效刺激物不是CO2本身,而是CO2通过血脑屏障进入脑脊液后,与H2O生成H2CO3,由H2CO3解离出的H+起作用。
b.低O2对呼吸的调节:动脉血中Po2下降到10.7kPa(80mmHg)以下,可出现呼吸加深、加快,肺通气量增加。切断动物外周化学感受器的传入神经或摘除人的颈动脉体,低O2不再引起呼吸增强。表明低O2对呼吸的刺激作用完全是通过外周化学感受器而兴奋呼吸中枢实现的。
低O2对呼吸中枢的直接作用是抑制,这种抑制作用随着低O2程度加重而加强。但低O2可通过刺激外周化学感受器而兴奋呼吸中枢,在一定程度上可对抗低O2对呼吸中枢的直接抑制作用,严重低O2时,来自外周化学感受器的传入冲动将不能抗衡低O2对呼吸中枢的抑制作用,则可导致呼吸减弱,甚至呼吸停止。
c.H+对呼吸的调节:动脉血中H+浓度升高,兴奋呼吸;H+浓度降低,使呼吸抑制。H+对呼吸的调节作用主要通过刺激外周化学感受器所实现,因血液中的H+通过血脑屏障进入脑脊液的速度慢,对中枢化学感受器的作用较小。
综上所述可以说明,当动脉血中CO2和O2分压以及H+浓度发生变化时,通过化学感受器呼吸反射来调节呼吸,而呼吸活动的改变又恢复了动脉血液中CO2、O2、H+的水平,从而维持了内环境中这些因素的相对稳定。
欢迎分享,转载请注明来源:优选云