学校仍会存在,但功能会发生重大改变
Q1:您在书中谈到,今天的学校和几百年前的学校相比没什么变化,而校园外的世界早已变得几乎面目全非。在您看来,一所典型的大数据时代的学校,应该是什么样的?
舍恩伯格:首先我必须说,我的答案并不是完美的答案。因为我们人类很难预测未来,我们的视野会被我们已经见到的东西局限住。
我举个例子,欧洲一所大学里,一群学建筑的学生被要求设计出2050年的学校。这些25-30岁的年轻人设计的作品都包括教室、黑板、图书馆、实验室等现在的学校里有的东西,甚至还有一间专门的电脑室。这些设计中没有wifi,没有平板电脑——人们很难预见未来。
就我个人的观点,我认为未来的学校不会完全转移到线上,未来的学校仍旧会有物理性的存在,但是,学校的功能将发生重大改变。
现在的学校是一个学生接受信息的空间,但未来学生们将在家里通过观看网上视频等形式接受信息,然后到学校去和老师、同学就自己学习的内容进行讨论。学校将变成一个社会性的场所,是一个互相讨论,互相学习的所在。
二问未来的老师怎么当?
教师核心技能从宣讲知识变为组织讨论、个别引导
Q:大数据时代,翻转课堂会削弱老师在学习过程中的重要性吗?
舍恩伯格:不会!
大数据只会帮助老师的工作。以前老师不知道哪些部分的内容是学生面临困难的,哪些学习材料是学生感兴趣的,接下来的教授重点应该是什么。大数据可以帮助老师,提供这些信息。
我举个例子,我的《大数据时代》这本书出版之后,我并不知道读者的确切反馈,直到我们把电子书的版权卖给了亚马逊。
读者们在kindle上阅读这本书,我就可以从亚马逊获取很多信息:某个读者花费多少时间读完这一本书,甚至花费多少时间在某一页上;读者们在哪些部分画了下划线以突出这些字句。
我告诉你一个秘密,亚马逊统计了全书中被读者们画出下划线次数最多的十个句子,我一个都没有猜中!
同样,大数据可以帮助老师们更深入了解学生的学习兴趣和学习风格。
当然,翻转课堂需要老师们的教学技能发生改变。以前照本宣科的传授、宣讲知识的技能,要让位于组织学生讨论的技能;要让位于从数据中获取学生学习信息的技能;要让位于根据数据对学生进行个别引导的技能。
这确实有些困难,但如果老师们掌握了这些技能,学校将比现在的更美好。
Q:随着数据处理技术的进一步发展,如果发展到一定程度可以自动处理数据并生成自适应的教育内容,技术是否会取代老师?
舍恩伯格:不会!
有两方面的原因。一是数据处理无法生成内容,它可以筛选、排序、组合内容,但无法生成内容。而且,即使是翻转课堂,视频中教授知识的也仍是老师。
第二个原因是学习是一个社会性的过程,我们面对人沟通时比面对书本学习得更快也更好。
三问未来的学习如何变?
大数据将重塑学习的三个主要特征
Q:您的新书《与大数据同行——学习与教育的未来》中文版即将问世,能否概括一下,大数据对教育和学习究竟将带来哪些方面的改变?
舍恩伯格:大数据将重塑学习的三个主要特征,我将之称为“反馈、个性化和概率预测”。
首先说反馈。在正规教育中,从幼儿园到大学,反馈随处可见,最常见的就是考试。然而,这种教育反馈系统的几乎所有方面都存在很大的缺陷:我们并不是总在收集正确的信息,即便是,我们所有收集的数量也远远不足。
大数据正在改变这一现状。我们能够收集到过去无法获取的学习数据,并用于学习过程的处理。我们还能用新的方式组合数据,并充分发挥起作用以提高学习理解和学业表现,同时分享给教师和管理者以改善教育系统。
我刚才举的通过亚马逊获得的读者反馈就是一例。
然后是个性化。学习一直以来都是个人行为,但大多数正规学校的教育,在其设计时考虑的是处于平均水平的学生——比坐在前排的神童学得慢,但比教室后排的笨蛋学得快的一种虚构的生物。而现实中,并没有归属于这一类别的学生。
我们需要的是“一个尺寸适合一个人”的方式。既然我们可以截取、混合最爱的音乐并将之刻录到iPods播放器中,那为什么不能对我们的学习做出同样的操作呢?
在未来,学习决不会是按照一本给定的教科书、一门科目或课程,以同样的顺序和步调进行,而将会是有数千种不同的组合方式。
最后说说概率预测。通过大数据,我们能够对人们的整体学习状况和个体的知识掌握情况产生独到的见解。然而这些见解并不是完美的。我们“对学习的学习”可是说只是一种“可能性”。
我们可以基于高度的可能性,对个体为提高其学业成绩需要实施的行为作出预测。比如,选择最有效的教材、教学风格和反馈机制。但这仅仅是概率预测。
四问:大数据可能带来教育领域哪些危险?
用数据贴标签和限制学习自由
Q:除了这些正面的影响,大数据对于教育和学习有没有什么负面的影响?
舍恩伯格:是的。其危险有两个,一个是“永久的过去”,一个是“决定了的未来”。
所谓“永久的过去”是指,我们作为个人不断地成长、发展、变化,而那些多年来收集的全面的教育数据却始终保持不变。
想象一下,某个学生的活动记录被存储下来,并在25年后他找工作的时候被提供给未来的雇主,这将会是怎样的情形?
因此,全面教育数据带来的首个重大威胁,并不是信息的发布不当,而是束缚我们的过去、否定我们进步、成长和改变的能力,而且目前尚无抵御这一威胁的可靠措施。
所谓“决定了的未来”是指,以所有人为对象收集到的全面教育数据,将用于对未来进行预测;但是系统也可能带来一些恶性的后果。假如系统预测某个学生不太可能在一个学科领域(如生物信息学)取得良好成绩,于是引导他转入护理之类的其他专业,我们应该如何看待系统的决策?
诸如此类的概率预测将会限制我们的“学习自由”,并有可能最终威胁到我们对生活中的机遇的获取。比如大学可以很容易利用大数据选拔出学习能力最强的学生,毕竟教育最聪明的10个学生很容易,而提高普通学生的成绩却难得多,但也有意义的多。
在我看来,大数据蕴含的巨大潜力在于推进个性化学习、改善教材和教学、并最终提高学生的成绩。数据应该被视为促进产品改良的反馈,而不是对产品使用者进行简单评价的依据。
Q:我们该如何避免这些状况的发生?
舍恩伯格:依靠法律。我认为应该对大数据的使用立法,明确规定哪些数据可以收集和使用,哪些数据不能收集和使用;哪些数据可以在哪些领域中加以使用等等。
开头:他是谁前段:长相,可以用一些小事来表现他的一些外貌特点
中段:性格,可以用一些小事来表现他的一些性格特点
后段:他的人缘怎么样,为什么
结尾:他有什么值得我学习
欢迎分享,转载请注明来源:优选云