那么怎么判断质数呢?
由于大于2的质数一定是奇数(奇数又不一定都是质数),所以,在判断一个自然数是不是质数时,首先要看它是奇数还是偶数。如果是大于2的偶数,这个数肯定不是质数,而是合数;如果是奇数,那就有可能是质数,可以用试除法来判断一个自然数是不是质数。例如判断143、179是不是质数,就可以按从小到大的顺序用2、3、5、7、11……等质数去试除。一般情况下用20以内的2、3、5、7、11、13、17、19这8个质数去除就可以了。如143,这个数的个位是3,排除了被2、5整除的可能性,它各位数字的和是1+4+3=8,也不可能被3整除,通过口算也证明不能被7整除,当试除到11时,商正好是13,到此就可以断定143不是质数。
对179试除过程如下:
179÷2=59……2
;
179÷3=66……1
;
179÷5=35……4
;179÷7=25……4;
179÷11=16……3
;179÷13=13……10;
179÷17=10……9
;当179÷17所得到的不完全商10比除数17小时,就不需要继续再试除,而断定179是质数。这是因为2、3、5、7、11、13、17都不是179的质因数,因此,179不会再有比17大的质因数,或者说179不可能被小于10的数整除,所以,179必是质数无疑。
综上所述,用试除法判断一个自然数a是不是质数时,只要用各个质数从小到大依次去除a,如果到某一个质数正好整除,这个a就可以断定不是质数;如果不能整除,当不完全商又小于这个质数时,就不必再继续试除,可以断定a必然是质数。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。分解质因数只针对合数。
一个合数用几个质数相乘的形式表示出来,叫做分解质因数。
例:12=2x2x3
举个简单例子,12的分解质因数可以有以下几种:12=2*2*3=4*3=1*12=2*6,其中1,2,3,4,6,12都可以说是12的因数,即相乘的几个数等于一个自然数,那么这几个数就是这个自然数的因数。2,3,4中,2和3是质数,就是质因数,4不是质数。那么什么是质数呢?就是不能再拆分为除了1和它本身之外的因数的数,如2,3,5,7,9,11,13,17,19,23,29等等,质数没有什么特定的规律,最大的质数仍然在计算当中。
求一个数分解质因数,你只要从2开始除起就好了,有个分解质因数的算式的,和除法的写法差不多,也能用来求2个数的公因式:
如24
2┖24(┖是象除法算式那个┌一样的符号)
2┖12
2┖6
2┖3-------3是质数,结束
再如105
3┖105
5┖35
----7-------7是质数,结束
思路:求两个数的公因数,可以用列举法、分解质因数法或者短除法等。然后在公因数里面找到最大公因数或者最小公因数。179和45这两个数的最小公因数是1。延伸:最大公因数也是1,因为179=1×179,45=1×5×3×3。179和45是互质数,除了1之外没有其它公因数。
欢迎分享,转载请注明来源:优选云