氢谱碳谱比较常见,其它比较常见的还有氟谱,磷谱,也都差不多。
一般来说氢谱氟谱是没有去耦合的,碳谱默认是去耦的,磷谱可选。
给定原子的核外电子进动是一个定值(1H, 2H各有一个本征频率),与核对电子的吸引有关。化学位移(也就是你在谱上可以读到的ppm值)是由于电子所处的化学环境造成这个值的偏移。吸电子的原子或原子团,对氢核有deshielding去屏蔽作用,效果是使核的有效电荷增大,对电子的吸引力增强,化学位移为正(向左移,数值增大),给电子基团的作用相反。
因为不可能去测单个氢原子的进动频率,人为规定化学位移的0点为四甲基硅烷,由于碳的电负性大于硅,与硅烷相比都有吸电作用,常见有机物的化学位移均为正。
烷基多在0.8-1.8
sp2C-H 多在 6-8 (包括简单烯烃和苯环)
Sp3C-H 在2左右
NH2,OH由于氢键的原因,在不同溶剂中,变化较大,与浓度也有关系。
醛基上的氢 在9-10
这些比较常见,还有一些溶剂的化学位移,你需要记住,这样读谱的时候很容易知道哪些峰是被测物质的。
此外原子核之间的耦合在未去耦的谱上也有表现,一般氢谱最多可以看到隔了四个化学键的氢核之间的耦合(至少隔两个键,即两个氢连在一个中心原子上),耦合规律就是n个氢核将与之耦合的氢核磁性核信号峰劈裂成n+1个多重峰,-CH2CH3,CH2,被劈成3+1=4个峰,CH3被劈成2+1=3个峰,在丙烷CH3CH2CH3中,CH2则被劈成6+1=7个峰,多重峰之间的强度关系依照杨辉三角形规则(只针对自旋为1/2的核,氘自旋为1,不符合这一规律)分别为, 1:1, 1:2:1, 1:3:3:1,1:4:6:4:1……。注意,这n个核一定是完全相同才能这么算,如果不同则耦合常数不同,出现二级耦合,此时多重峰的情况将变得复杂。
碳谱比氢谱简单,去耦后,峰强度和碳核丰度没有联系,只考虑化学位移即可。
1、铁磁共振型
铁磁体中原子磁矩间的交换作用使这些原子磁矩在每个磁畴中自发地平行排列。一般,在铁磁共振情况下,外加恒定磁场已使铁磁体饱和磁化,即参与铁磁共振进动运动的是彼此平行的原子磁矩(饱和磁化强度Ms)。
2、反铁磁共振型
反铁磁体是包含两个晶体学上等效的磁亚点阵且磁矩互相抵消的序磁材料,反铁磁共振是反铁磁体在奈耳温度以下的磁共振。由交换作用强耦合的两个磁亚点阵中磁矩的复杂进动运动产生的共振现象。在反铁磁共振中,有效恒定磁场包括反铁磁体内的交换场BE和磁晶各向异性场BA。
3、顺磁共振型
具有未抵消的电子磁矩(自旋)的磁无序系统,在一定的恒定磁场和高频磁场同时作用下产生的磁共振。若未抵消的电子磁矩来源于未满充的内电子壳层(如铁族原子的3d壳层、稀土族原子的4f壳层),则一般称为(狭义的)顺磁共振。
4、回旋共振型
亦称抗磁共振。固体中的载流子(电子及空穴)和等离子体以及电离气体在恒定磁场B和横向高频电场E(ω)的同时作用下,当高频电场的频率ω与带电粒子的回旋频率相等,ω=ωc,这些带电粒子碰撞弛豫时间τ远大于高频电场周期,即τ≥1/ω时,便可观测到带电粒子的回旋共振。
5、磁双共振型
固体中有两种或更多互相耦合的基团或磁共振系统时,一种基团或系统的磁共振可以影响另一种基团或系统的磁共振,因而可以利用其中的一种磁共振来探测另一种磁共振,称为磁双共振。
参考资料来源:百度百科-磁共振
分析如下:
1、飞利浦、GE、西门子目前最高端的1.5T型号分别是:Multiva 1.5T、Optima 360 Advanced、Aera XQ
2、其中飞利浦的Multiva整体从硬件到软件的设计都体现了飞利浦鱼与熊掌可以兼得的设计理念和设计思想:
(1)从平台到线圈的配备,再到结合线圈实现的增速效果(专业称加速因子),都是16,图像信噪比和扫描速度同步提高,这是GE和西门子都不具备的;
(2)线圈的设计工艺,保证了Multiva在工作流程上是最优化的,基本上可以实现”0”线圈的更换,同时线圈与患者体表也是“0”距离的接触,工作流程优化的同时也提高了图像的信噪比;
(3)Multiva上有最新的磁共振压脂技术魔镜,在缩短一半扫描时间的同时,实现的关节压脂效果也是最好的。总之,Multiva的整体设计满足了中国人所想要的,那就是又快又好。
扩展资料:
1、磁共振是在固体微观量子理论和无线电微波电子学技术发展的基础上被发现的。1945年首先在顺磁性Mn盐的水溶液中观测到顺磁共振,第二年,又分别用吸收和感应的方法发现了石蜡和水中质子的核磁共振;用波导谐振腔方法发现了Fe、Co和Ni薄片的铁磁共振。
2、1950年在室温附近观测到固体Cr2O3的反铁磁共振。1953年在半导体硅和锗中观测到电子和空穴的回旋共振。1953年和1955年先后从理论上预言和实验上观测到亚铁磁共振。随后又发现了磁有序系统中高次模式的静磁型共振(1957)和自旋波共振(1958)。1956年开始研究两种磁共振耦合的磁双共振现象。这些磁共振被发现后,便在物理、化学、生物等基础学科和微波技术、量子电子学等新技术中得到了广泛的应用。
3、例如顺磁固体量子放大器,各种铁氧体微波器件,核磁共振谱分析技术和核磁共振成像技术及利用磁共振方法对顺磁晶体的晶场和能级结构、半导体的能带结构和生物分子结构等的研究。原子核和基本粒子的自旋、磁矩参数的测定也是以各种磁共振原理为基础发展起来的。
4、磁共振成像技术由于其无辐射、分辨率高等优点被广泛的应用于临床医学与医学研究。一些先进的设备制造商与研究人员一起,不断优化磁共振扫描仪的性能、开发新的组件。例如:德国西门子公司的1.5T超导磁共振扫描仪具有神经成像组件、血管成像组件、心脏成像组件、体部成像组件、肿瘤程序组件、骨关节及儿童成像组件等。其具有高分辨率、磁场均匀、扫描速度快、噪声相对较小、多方位成像等优点。
参考资料:百度百科:磁共振
欢迎分享,转载请注明来源:优选云