T2WI是T2加权像,是磁共振成像中显示组织信号的一种窗口名称。
L代表的是腰椎,S代表的是骶椎,
1、是腰3和腰4间的椎间盘膨出,2、是腰4和腰5间椎间盘,腰5和骶1间的椎间盘向左后突出,左侧神经根受压,局部椎管狭窄。
临床症状不明显时可以保守牵引等治疗,效果不明显时,症状加重时可以做微创手术。
不知您要问的是什么问题,只能如此简单介绍了。
T1、T2的意义是用来判断是否病变的一个参数,因为病变组织的T1、T2值与正常组织的值不同。
MRI就是核磁共振,数值是它的强度,越大的机器越好越贵。
T1加权像、T2加权像为磁共振检查中报告中常提到的术语。
与核自旋有关,T1是纵向弛豫,T2是横向弛豫。
核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。核磁共振波谱学是光谱学的一个分支,其共振频率在射频波段,相应的跃迁是核自旋在核塞曼能级上的跃迁。
扩展资料
基本原理
原子核的自旋
核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系。
I值为零的原子核可以看做是一种非自旋的球体,I为1/2的原子核可以看做是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。I大于1/2的原子核可以看做是一种电荷分布不均匀的自旋椭球体。
核磁共振现象
原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。
μ=γP
式中,P是角动量矩,γ是磁旋比,它是自旋核的磁矩和角动量矩之间的比值,因此是各种核的特征常数。
当自旋核(spinnuclear)处于磁感应强度为B0的外磁场中时,除自旋外,还会绕B0运动,这种运动情况与陀螺的运动情况十分相像,称为拉莫尔进动(larmorprocess)。自旋核进动的角速度ω0与外磁场感应强度B0成正比,比例常数即为磁旋比(magnetogyricratio)γ。式中ν0是进动频率。
ω0=2πν0=γB0
原子核在无外磁场中的运动情况如下图,微观磁矩在外磁场中的取向是量子化的(方向量子化),自旋量子数为I的原子核在外磁场作用下只可能有2I+l个取向,每一个取向都可以用一个自旋磁盘子数m来表示,m与I之间的关系是
m=I,I-1,I-2?-I
原子核的每一种取向都代表了核在该磁场中的一种能量状态,I值为1/2的核在外磁场作用下只有两种取向,各相当于m=1/2和m=-1/2,这两种状态之间的能量差ΔE值为
ΔE=γhB0/2π
一个核要从低能态跃迁到高能态,必须吸收ΔE的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振。当频率为ν射的射频照射自旋体系时,由于该射频的能量E射=hν射,因此核磁共振要求的条件为
hν射=ΔE(即2πν射=ω射=γB0)①
目前研究得最多的是1H的核磁共振和13C的核磁共振。1H的核磁共振称为质子磁共振(ProtonMagneticResonance),简称PMR,也表示为1H-NMR。13C核磁共振(Carbon-13NuclearMagneticResonance)简称CMR,也表示为13C-NMR。
核磁共振饱和与驰豫
1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。1H的两种取向代表了两种不同的能级,在磁场中,m=1/2时,E=-μB0,能量较低,m=-1/2时,E=μB0,能量较高,两者的能量差为ΔE=2μB0。
式①,式②说明:处于低能级的1H核吸收E射的能量时就能跃迁到高能级。也即只有当电磁波的辐射能等于lH的能级差时,才能发生1H的核磁共振。
E射=hν射=ΔE=hν0②因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,既符合下式。
ν射=ν0=γB0/2π③由式③可知:要使ν射=ν0,可以采用两种方法。一种是应强度,逐渐改变电磁波的辐射频率ν射,进行扫描,当ν射与B0匹配时,发生核磁共振。
参考资料:百度百科-核磁共振
欢迎分享,转载请注明来源:优选云