一个整数能够整除另一整数,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数除以另一数所得的商。如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。
注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
扩展资料:
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。如264、3080和95949392、2+4-6=11×0,3+8-0-0=11×1,9×4-(5+4+3+2)=11×2,264、308和95949392都能被11整除。
11的倍数检验法也可用上述检查7的「割尾法」处理。过程唯一不同的是:倍数不是2而是1。
将一个数从个位开始两两分隔,若所有分隔开的数和为11的倍数,则这个数为11的倍数(如32571,分隔成3 25 71,3+25+71=99,99为11倍数,所以32571是11的倍数)
参考资料来源:百度百科——倍数
1、倍数的定义:一个整数能够被另一个整数整除,那么这个整数就是另一整数的倍数。
2、公倍数定义:两个或多个整数公有的倍数叫做它们的公倍数。两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数。
3、一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
倍数有三种解释:
1、一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
2、一个数除以另一数所得的商,如a÷b=c,就是说,a是b的倍数。例如:A÷B=C,就可以说A是B的C倍。
3、一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。 注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
扩展资料
注意“倍”和“倍数”的区别:
1、“倍”指的是数量关系,它建立在乘除法概念的基础上。
例如:男生有10人,女生有30人,因为“10×3=30”或者“30÷10=3”,就可以说,女生人数(30)是男生人数(10)的3倍,也可以说,男生人数(10)的3倍等于女生人数(30)。
“倍”其实表示的是两个数的商(这个商可以是整数、小数、分数等各种表现形式)。
2、“倍数”指的是数与数之间的联系,它建立在整除概念的基础上。
例如,30能被6整除,30就是6的倍数。可见,“倍数”是不能独立存在的(具有特定的指向性),而且对数的形式有特别的要求(必须为整数)。
同时,30也是6的5倍,因为6×5=30,“6×5”表示6的5倍。所以从这个角度来说,“倍”的涵义应宽泛于“倍数”,后者可以视为前者在特定情形下的一种表现。
参考资料来源:百度百科-倍数
欢迎分享,转载请注明来源:优选云