
1 塔式服务器(Tower Server):塔式服务器适用于中小企业和分支机构等小型办公环境,具有较低的噪音和较小的空间占用。浪潮的塔式服务器产品线包括 T系列。
2 机架式服务器(Rack Server):机架式服务器适用于数据中心和大型企业,设计为与标准机架兼容,便于集成和管理。浪潮的机架式服务器产品线包括 R系列。
3 刀片式服务器(Blade Server):刀片式服务器是一种高密度、可扩展的服务器解决方案,适合大型数据中心和云计算环境。浪潮的刀片式服务器产品线包括 H系列。
4 高性能计算服务器(High-Performance Computing Server):高性能计算服务器专为高性能计算(HPC)任务和人工智能(AI)应用设计,提供最高可用性和性能。浪潮的高性能计算服务器产品线包括 X系列。
5 分布式存储服务器(Distributed Storage Server):用于大数据存储和处理的服务器,通过分布式存储架构提供高可用性、可扩展性和容错性。如浪潮翼龙存储服务器等。
6 GPU服务器(GPU Server):适用于图形处理、深度学习和其他需要高性能并行计算能力的场景。浪潮的GPU服务器产品线包括 G系列。
此外,浪潮还提供定制服务器解决方案,以满足特定行业或应用场景的需求。以上是浪潮服务器的几种主要类型,实际选择时需要根据应用场景、性能需求和预算等因素进行综合考虑。从最开始买服务器的时候我就问了商家,能不能用显卡,商家答复厚度不超过2CM的刀卡是可以用的;并且在安装macOS的时候,我也发现3M的显存是真的不够用,上显卡的冲动再次涌上心头。
显卡适配关系
服务器作为比较特殊的设备,和普通PC不同,支持的显卡型号有限,以下为我从HPE官网找到的显卡适配关系,与其说是显卡,不如说是GPU,更偏向于计算,适合搞AI(所以一开始有朋友问我是不要开始搞大数据或者人工智能了,让大家失望了)。标红部分为已经查明的支持vGPU的显卡型号,也就是能按需分配给虚拟机。

这时我意识到,服务器有适配关系,那VMware ESXi是不是也有适配关系?我就找HPE的售后400工程师咨询了一下,大跌眼镜!直接丢给我一个查询配套关系的软件,下载原始链接如下:
>GPU(Graphics Processing Unit),中文名:图形处理器,曾用名:显卡。
1999年,Nvidia(英伟达)公司“ZAO”了GPU,这玩意除了极大的推动了基于PC的游戏市场发展,还彻底改变了并行计算。
没想到二十年后,Nvidia摇身一变成了高大上的AI计算公司,还用GPU绑架了整个人工智能圈子。
我有个客户,几年前新建了一个数据中心,通过P2V技术淘汰了大量X86物理服务器,直接在IT基础设施上成功完成了服务器虚拟化转型,之后就马不停蹄的向云计算转型,而当下,又开始了人工智能转型。
随着智能商业时代的到来,一些大公司对于AI技术的关注和使用也快速增加,这些企业都非常注重自身科技能力的构建。其中,搭建自有AI平台,赋能业务成了这些有实力企业的首选。我这个客户自然也不能免俗,采购了大量的GPU服务器进行部署。
在落地AI场景的同时,客户也希望对建立GPU资源池做一个评估。针对客户需求,做了一些功课。对于AI,我依然只是知道一点皮毛,要说什么算法和模型,我是没戏的,但是可以把交流的学习心得分享一下。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)