
方案一 以单片机为核心处理器的DMR对讲机方案(MSP430F149+AMBE1000)
1工作原理
发射时,由麦克送来的模拟语音经CSP1027进行A/D转换,由声码器AMBE1000进行语音压缩,交单片机MSP430F149进行协议填充组帧,送到CC1101进行调制后发射。接收时,由CC1101解调出来的码流经MSP430F149进行帧恢复,交由声码器进行解压,数据经CSP1027进行D/A转换为模拟语音信号。
2关键器件
微控制器采用TI公司的MSP430F149,它是16位超低功耗、混合信号微控制器,采用“冯·诺依曼”结构,可用JTAG(一种标准测试接口)进行仿真调试。
芯片的电源电压为(18~36)V,在RAM数据保持方式下耗电仅01uA,活动模式耗电250 uA/MIPS(每秒百万条指令数)。运算时由于本单片机采用16位RISC(精简指令集计算机),一个时钟周期可以执行一条指令,而传统的单片机要12个时钟周期才执行一条指令。工作在8MHz的晶振频率时,指令速度可达8MIPS,而同样这个指令速度,16位处理器比8位处理器高远不止两倍。
概述
声码器AMBE1000在国内已有产品,价格比较合理。CC1101的灵敏度为-116dBm(12kbps,1%数据包误码率,工作在433MHz时),与国内的对讲机可用灵敏度-120dBm相比偏低,但符合欧盟的CE标准规定小于-107dBm另外,射频模块的功率输出仅12dBm(16mW),所以本方案仅适用短距离范围的通信。提高灵敏度可考虑用器件ADF7021作为射频模块。
方案二 以DSP+MCU为核心处理器的对讲机方案
1工作原理
方案以MSP430为中心系统来完成数据的收、发控制等工作,系统采用MSP430中 USART模块的SPI同步通信模式。在接收过程中,首先接收来自射频芯片的FSK数据,解调后由MSP430将数据帧的同步域、尾域、ID域以及命令字节去除后,数据发至C5402进行去压缩处理,数据交AIC23进行D/A转换为语音信号。在发送过程中,首先由AIC23进行A/D转换,数据交C5402将语音压缩,再由微控制器MSP430进行协议填充,加上头域、尾域、ID域以及命令字节形成数据帧,然后控制射频模块将数据发送。
2关键器件
TMS320C5402是TI公司于1996年推出的一种定点DSP芯片,采用先进的修正哈佛结构和8总线结构,使处理器的性能大大提高。其独立的程序和数据总线允许同时访问程序存储器和数据存储器,实现高速并行 *** 作。如,可以在一条指令中同时执行3次读 *** 作和1次写 *** 作。TMS320C5402的运行速度为40MIPS,指令周期为25ns此外,还可以在数据总线与程序总线之间相互传送数据。从而使处理器具有单个周期内同时执行算术运算、逻辑运算、位移 *** 作、乘法累加运算以及访问程序、数据存储等强大功能。
概述
采用DSP方案时,免去选用语音芯片声码器的烦恼,提高了数字对讲机对语音处理的能力,可让语音编码的算法尽量优化,从而使对讲机语音信号的处理更具通用性和扩展性。本方案是以DSP为开发平台,经过连续可变斜率增量(CVSD)调制编解码得到语音信号的清晰度和自然度好,但软件开发工作量大。CC1000不支持4FSK调制与解调,本方案不适用于DMR与dPMR协议。另外CC1000的接收可用灵敏度为-110dBm,国内对讲机厂家可能嫌低。
方案三 以单片机为核心处理器的dPMR对讲机方案(CMX618+CMX7141)
1工作原理
发射时,麦克送来的模拟语音经CMX618内部进行增益调节,A/D转换和压缩处理,然后通过SPI(串行外围设备接口)进入CMX7141基带处理器,在微控制器LPC2138的控制和管理下经CMX7141芯片内部进行信道编码,dPMR协议栈打包,数字滤波以及4FSK调制,调制编码后的语音数据经CMX7141芯片的MOD1/2管脚分别输出给外部的发射VCO和压控温补参考时钟,经两点调制输出射频载波给发射功放,并到天线输出。
接收时,CMX7141对基于超外差射频接收模块送来的4FSK解调信号在微控制器LPC2138的控制和管理下进行4FSK解调,dPMR拆包,信道解码,最终得到语音编码数据,经SPI串口送给CMX618进行语音解压缩并恢复语音信号。
2关键器件
语音编解码片CMX618是CML微电子(新加坡)私人有限公司的产品,芯片由音频压缩/解压器、RALCWI编解码器、前向纠错编解码器和其他特殊功能模块几部分组成。
RALCWI是一种鲁棒的先进的复杂性波形插入技术,与其他语音编解码技术不同,它使用独有的信号分解和参数编码方法,可确保在较高的压缩率下有较好的语音质量。
在声码器中,采用RALCWI技术实现的语音质量与编码速率在4kbps以上的标准声码器话音质量相当。
概述
本方案优点是开发时的灵活性高,模拟与数字可双模设计,且同一个硬件开发平台能满足不同的数字对讲机标准,支持多种语音声码器,射频的接收灵敏度可做得较高达到-118dBm(误码率为1%时)。发射功率05W,功率容易提升。
缺点是前期的软件开发成本高并有一定难度,射频模块ATB010只支持dPMR的EN301,166标准,不支持DMR
方案四 以MCU+DSP的DMR对讲机方案(MSP430FG4619+VC5510)
1工作原理
发射时,由麦克送来的模拟语音经模数转换器AD73311采样成数字信号,AMBE2000对语音数字信号进行压缩编码,数字信号由VC5510进行DMR通信协议填充组成帧信号和4FSK的调频波成形,最后由微控制器MCU进行D/A转换,送往射频模块进行发射调制,实现发射。
接收时,MCU将射频模块送来已解调数据进行A/D转换,经VC5510进行拆帧,交AMBE2000进行解压,数据由AD73311数模转换为语音信号。
微控制器MSP430FG4619是整个系统的控制中心,人机接口如键盘、显示器与MCU直接连接。微控制器实现对射频模块的控制,包括基带信号的发送与接收、射频频率点的控制、信道检测等,MCU还负责DMR协议的高层信令控制、人机接口的互通等。
另外,请注意微控制器还要完成基带信号的AD/DA转换功能。
2关键器件
AMBE2000TM声码器是美国语音公司DVSI推出的一款适应性强、高性能、单芯片的语音压缩编解码器。它能在低速率下提供优良的语音质量,并实现了实时的、全双工的标准设定的AMBE语音压缩软件算法。
大量的评估显示,这款声码器具有在一般数据速率下提供同数字蜂窝系统一样性能的能力。AMBE在24kbps速率下保持自然语音质量和清晰度,由于AMBE算法复杂性低,所以它能够完全集成在成本低、功耗低的芯片上。
概述
方案简单,实用。
软件开发中,微控制器和数字处理器的程序对DMR协议的分层必须有清晰的概念,正确的程序设计是硬件实现的保证。声码器的选用有较大的余地。
方案五 以ARM+DSP的DMR对讲机方案
1工作原理
发射时,由麦克送来的话音信号由数模转换器AD73311进行采样,数据由声码器进行压缩,OMAP5910内的DSP与ARM对压缩的数据进行协议添加与控制,形成4FSK波形,数模转换器AIC23将4FSK数字波形模拟化后进行射频调制,调频载波由天线发射。
接收时,射频模块对接收的模拟信号进行解调,模拟信号交AIC23进行数字化处理,OMAP5910对接收到的数据进行信道解码和拆帧,帧信号交声码器进行解压,数据由AD73311还原为模拟语音信号。
2关键器件
OMAP5910是一款嵌入式双核处理器,它集成了高性能的ARM925、TMS320C55x DSP核和已经得到的广泛应用的各种接口与外设,具有较强的处理能力、较低的功耗和较高的信价比。ARM处理器内核用于DMR协议的处理与系统控制,DSP内核用于完成数字信号的实时处理。
OMAP5910及其设计套件具有多个目标应用市场,提供多媒体功能、改善人机界面并延长电池寿命。
概述
从技术上讲,双核处理器方案与前面介绍的DSP+MCU相比,可以降低系统体积,减少电路的复杂性,对通信协议能作较好的兼容,升级空间大。声码器的应用有可选国产芯片的余地。
缺点是前期的软件开发工作量大,ARM与DSP间的协调工作要深入研究,以免浪费处理器的资源。此外,由于OMAP的功能十分强大,该平台还可以有更多的应用,如加入视频、娱乐等功能。
方案六
1工作原理
发射时,麦克送来的模拟语音经WM8758B进行A/D转换,送到SCT3252进行压缩处理,经SCT3252进行dPMR协议处理后送到WM8758B的D/A转换单元调制成4FSK信号,经两点调制输出射频载波给发射功放,送天线输出。
接收时,WM8758B对射频模拟信号进行A/D转换,送到SCT3252进行4FSK解调,dPMR拆包,信道解码,最终得到语音编码数据,经解码处理后把语音数据送到WM8758B进行D/A转换,经由外部放大电路送入喇叭还原成话音。
2关键器件
SCT3252是上海士康公司生产的语音编解码及dPMR协议栈处理芯片。具有较好的语音质量及较高的接收灵敏度(可达-126dBm)。
概述
本方案的特点是语音编解码及dPMR协议栈都集成在SCT3252中,大大减少了控制单元MCU的工作量,另外SCT3252为LQFP100封装,焊接方便。整个方案简单,软件升级的空间大。本方案可以实现数模兼容,通过开关可方便进行数字与模拟通信之间的切换。
WM8758B只起模数转换作用,厂家认为,把它集成进SCT3252是指日可待的事。
1、射频芯片负责信息发送和接收,基带芯片负责信息处理;
2、射频芯片负责射频收发、频率合成、功率放大,基带芯片负责信号处理和协议处理。
基带芯片是用来合成即将发射的基带信号,或对接收到的基带信号进行解码。具体地说,就是发射时,把音频信号编译成用来发射的基带码;接收时,把收到的基带码解译为音频信号。同时,也负责地址信息(手机号、网站地址)、文字信息(短讯文字、网站文字)、信息的编译。
射频简称RF射频就是射频电流,是一种高频交流变化电磁波,为是Radio Frequency的缩写,表示可以辐射到空间的电磁频率,频率范围在300KHz~300GHz之间。射频芯片指的就是将无线电信号通信转换成一定的无线电信号波形, 并通过天线谐振发送出去的一个电子元器件。
问题一:为什么说生产基带芯片的门槛极高呢?基带芯片是指的CPU吗?中国现在还没有能力生产自己的基带芯片吗? 因为全世界能自主设计基带芯片的厂家很少,拥有全频段和网络制式支持的更少;所以说门槛比较高。
基带是手机讯号的发送、解码芯片,不是处理器(CPU);部分处理器集成了基带,也有不带基带的处理器,需要搭配独立基带芯片。
“基带是手机中的一块电路,负责完成移动网络中无线信号的解调、解扰、解扩和解码工作,并将最终解码完成的数字信号传递给上层处理系统进行处理。” (来源 :百科)
中国目前有华为、联芯等基带设计公司,其中华为的基带芯片是世界较为领先的水平。
如有不懂之处请追问,有帮助请采纳,谢谢
问题二:什么是基带芯片 常见基带处理器负责数据处理与储存,主要组件为DSP、微控制器、内存(如SRAM、Flash)等单元,主要功能为基带编码/译码、声音编码及语音编码 等。目前主流基带架构:DSP+ARM。目前的主流是将射频收发器(小信号部分)集成到手机基带中,未来射频前端也有可能集成到手机基带里。随着数字射频 技术的发展,射频部分被越来越多地集成到数字基带部分,电源管理则被更多地集成到模拟基带部分,而随着模拟基带和数字基带的集成越来越成为必然的趋势,射 频可能最终将被完全集成到手机基带芯片中。德州仪器、英飞凌等厂商将基带和射频部分集成在一起,对于中高端应用则加上应用处理器。
基带芯片是用来合成即将的发射的基带信号,或对接收到的基带信号进行解码。具体地说,就是:发射时,把音频信号编译成用来发射的基带码;接收时,把收 到的基带码解译为音频信号。同时,也负责地址信息(手机号、网站地址)、文字信息(短讯文字、网站文字)、信息的编译。其主要组件为处理器(DSP、 ARM等)和内存(如SRAM、Flash)。
必须说明的是:早期的基带芯片一般没有音频信号的编译(编码解码)功能,也没有视频信息的处理功能。而目前的芯片,大都集成了这些功能。甚至,为了进 一步简化设计,这些编译电路所需要的电源管理电路也日益集成于其中。但是,为了保证电路的稳定性和抗干扰性以及个性化设计的要求,信号的功率放大电路尚未 集成于此,而是由另外芯片独立完成。
基带部分可分为五个子块:CPU处理器、信道编码器、数字信号处理器、调制解调器和接口模块。
CPU处理器对整个移动台进行控制和管理,包括定时控制、数字系统控制、射频控制、省电控制和人机接口控制等。若采用跳频,还应包括对跳频的控制。同时,CPU处理器完成GSM终端所有的软件功能,即GSM通信协议的layer1(物理层)、layer2(数据链路层)、layer3(网络层)、 MMI(人-机接口)和应用层软件。
信道编码器主要完成业务信息和控制信息的信道编码、加密等,其中信道编码包括卷积编码、FIRE码、奇偶校验码、交织、突发脉冲格式化。
数字信号处理器主要完成采用Viterbi算法的信道均衡和基于规则脉冲激励―长期预测技术(RPE-LPC)的语音编码/解码。
调制/解调器主要完成GSM系统所要求的高斯最小移频键控(GMSK)调制/解调方式。
接口部分包括模拟接口、数字接口以及人机接口三个子块:
(1)模拟接口包括:语音输入/输出接口;射频控制接口。
(2)辅助接口:电池电量、电池温度等模拟量的采集。
(3)数字接口包括:系统接口;SIM卡接口;测试接口;EEPROM接口;存储器接口:ROM接口主要用来连接存储程序的存储器FLASHROM, 在FLASHROM中通常存储layer1,2,3、MMI和应用层的程序。
问题三:基带芯片的区别 在手机终端中,射频芯片负责射频收发、频率合成、功率放大;而基带芯片负责信号处理和协议处理。简单的说,射频芯片就是起到一个发射机和接收机的作用。而基带芯片是整个手机的核心部分,就好比电脑的主机。
问题四:在手机中,基带芯片和射频芯片是什么关系?CPU和基带芯片是什么关系? 射频芯片一般就是指进行射频信号收发的芯片,在手机中,和基带芯片近似等同,因为基带就是对信号进行收发、调制解调等 *** 作的芯片。
但至于某个功能是否在某个芯片里,就是不一定的事情了。有些手机CPU内,集成应用处理器、基带处理器、GPS等。而有些CPU只有应用处理器部分,需要再配合其它的专用WiFi、蜂窝基带芯片,才能实现通讯能力。
问题五:我苹果5s基带芯片是7282913是什么意思了 基带是负责接受信号的,可以切换的。
问题六:基带芯片与射频芯片有什么区别 在手机终端中,射频芯片负责射频收发、频率合成、功率放大;而基带芯片负责信号处理和协议处理。简单的说,射频芯片就是起到一个发射机和接收机的作用。而基带芯片是整个手机的核心部分,就好比电脑的主机。
问题七:请问手机电路板上的基带芯片就是cpu芯片吗?如果不是,它们之间有什么关系? 有可能是,因为例如MTK和QUAM,展讯的cpu已经集成基带了有可能不是,苹果,三星,英伟达,因特尔的CPU从来不集成基带,一般采购高通的独立基带芯片,因特尔采用自己的英飞凌基带例外
问题八:手机cpu集成基带芯片是什么意思?什么是基带芯片? 基带就是通讯模块,什么样的基带就可以上某种网络制式的网。因为移动联通的网络方式都不一样所以有区分
问题九:wifi基带芯片有哪些 发展。这类芯片强调低功耗,对速率要求低,最大速
那个部分是外部连接天线用的。如果你要使用该芯片用来实现短距离的无线通信的话,芯片的RX和TX都是需要与天线相连的,不然如何能够实现对信号的接收和发送呢?
它的示意电路上的L6、L7、C8、C9也能实现一定的频分双工的功能。
因此红框部分是不能去掉的
以上就是关于射频前端模组,看这一篇就够了全部的内容,包括:射频前端模组,看这一篇就够了、请用最简单易懂的说法告诉我基带芯片、AP和射频芯片到底是什么,在手机里起什么作用谢谢!、单片机对讲机原理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)