
当 MySQL 不能使用索引产生有序结果时,它必须对数据行进行排序。这有可能是在内存中进行也可能是在磁盘进行,但 MySQL 始终将这个过程称之为 filesort,即便实际上并没有使用一个文件。
如果用于排序的值可以一次性放入排序缓存中,MySQL 可以在内存中使用快排算法进行排序。如果 MySQL 不能在内存中进行排序,则会在磁盘中按块逐块排序。它对每个块使用快排算法,然后在将这些排序好的块合并到结果中。
有两个文件排序(filesort)算法:
很难说哪种算法更有效,对每个算法来说都会有最优和最坏案例。MySQL 在数据表全部列加上用于排序的列的大小不超过 max_length_for_sort_data 时会使用单次遍历算法。可以通过修改这个参数影响排序算法的选择。
需要注意的是,MySQL 的 filesort使用的临时存储空间可能会超出你的预期,这是因为它对每个排序元素都分配了固定大小的存储空间。这些存储空间要足够大以便容下存储最大的元素,而且 VARCHAR这类字段使用的是对应的最大长度。而且,如果使用的是 UTF-8字符集,MuSQL 会对每个字符分配3个字节。结果是,我们会发现那些没怎么优化的查询会导致磁盘上的临时存储空间是数据表自身存储空间的好几倍。
而在对联合查询进行排序时,MySQL 可能会在查询执行过程中执行两次文件排序。如果 ORDER BY 子句只是引用联合查询的第一张表,MySQL 可以先对这个表进行文件排序,然后再处理联合查询。如果是这种情况,在 EXPLAIN 时会在 Extra 字段显示“Using filesort”。而对于其他的排序情况——例如排序不是针对第一张表,或者是 ORDER BY 使用的列对应了不止一个数据表,MySQL 必须使用临时表缓存查询结果,然而在联合查询完成后,再对临时表进行文件排序。在这种情况下,EXPLAIN 会在 Extra 字段显示“Using temoraryUsing filesort”。如果包含 LIMIT 约束的话,会发生在文件排序后,因此临时表和文件排序的存储空间可能非常大。
MySQL 5.6在只需要对数据行的子集(例如 LIMIT)进行排序时,引入了一个重大改进。相对于对整个结果集进行排序再返回部分数据,MySQL 有时候会在排序的时候直接丢弃掉不需要的数据行来提高效率。不管怎么样,排序也需要小心使用,很可能会导致存储占用的飙升最终导致系统负荷过大。
MySQL 前缀索引能有效减小索引文件的大小,提高索引的速度。但是前缀索引也有它的坏处:MySQL 不能在 ORDER BY 或 GROUP BY 中使用前缀索引,也不能把它们用作覆盖索引(Covering Index)。
集一个索引包含多个列(最左前缀匹配原则)
索引列的值必须唯一,但允许有空值
全文索引为FUllText,在定义索引的列上支持值的全文查找,允许在这些索引列中插入重复值和空值,全文索引可以在CHAR,VARCHAR,TEXT类型列上创建
设定主键后数据会自动建立索引,InnoDB为聚簇索引
即一个索引只包含单个列,一个表可以有多个单列索引
覆盖索引是指一个查询语句的执行只用从所有就能够得到,不必从数据表中读取,覆盖索引不是索引树,是一个结果,当一条查询语句符合覆盖索引条件时候,MySQL只需要通过索引就可以返回查询所需要的数据,这样避免了查到索引后的回表 *** 作,减少了I/O效率
查看索引
列名解析:
删除索引
查看:
删除前:
删除后:
普通的索引,没有什么介绍
查看:(注意和前缀索引Sub_part的区别)
当索引的列是unique的时候,会生成唯一索引,唯一索引关于null有下列两种情况
SQLSERVER 下的唯一索引的列,允许null值,但最多允许有一个空值
MYSQL下的唯一索引的列,允许null值,并且允许多个空值
查看:
会建立两个索引,一个非聚簇索引,一个是唯一索引
结果:
可以插入两个空值(明人不说暗话,我喜欢MySQL)
一方面,它不会索引所有字段所有字符,会减小索引树的大小.
另外一方面,索引只是为了区别出值,对于某些列,可能前几位区别很大,我们就可以使用前缀索引。
一般情况下某个前缀的选择性也是足够高的,足以满足查询性能。对于BLOB,TEXT,或者很长的VARCHAR类型的列,必须使用前缀索引,因为MySQL不允许索引这些列的完整长度。
查看:
查看:
复合索引的最左前缀匹配原则 :
对于复合索引,查询在一定条件才会使用该索引
减少开销。 建一个联合索引(col1,col2,col3),实际相当于建了(col1),(col1,col2),(col1,col2,col3)三个索引。每多一个索引,都会增加写 *** 作的开销和磁盘空间的开销。对于大量数据的表,使用联合索引会大大的减少开销!
覆盖索引。 对联合索引(col1,col2,col3),如果有如下的sql: select col1,col2,col3 from test where col1=1 and col2=2。那么MySQL可以直接通过遍历索引取得数据,而无需回表,这减少了很多的随机io *** 作。减少io *** 作,特别的随机io其实是dba主要的优化策略。所以,在真正的实际应用中,覆盖索引是主要的提升性能的优化手段之一。
效率高。 索引列越多,通过索引筛选出的数据越少。有1000W条数据的表,有如下sql:select from table where col1=1 and col2=2 and col3=3,假设假设每个条件可以筛选出10%的数据,如果只有单值索引,那么通过该索引能筛选出1000W10%=100w条数据,然后再回表从100w条数据中找到符合col2=2 and col3= 3的数据,然后再排序,再分页;如果是联合索引,通过索引筛选出1000w10% 10% *10%=1w。
在模糊搜索中很有效,搜索全文中的某一个字段,可以参考这篇博文
: https://zhuanlan.zhihu.com/p/88275060
我们先进行下面一个实验看看InnoDB下的主键索引的一个现象。
查看:
我们插入进去的时候,数据的id都是乱序的,为什么这里最后select查询出来的结果都是进行了排序?
这是因为InnoDB索引底层实现的是B+tree,B+tree具有下列的特点:
所以上面的排序是为了使用B+tree的结构 ,B+tree为了范围搜索,将主键按照从小到大排序后,拆分成节点。后续还有新的节点进入的时候,和B-tree相同的 *** 作,会进行分裂。
一般来说,聚簇索引的B+tree都是三层
InnoDB中主键索引一定是聚簇索引,聚簇索引一定是主键索引。
为什么这里辅助索引叶子结点不直接存储数据呢?
MYISAM只有非聚簇索引,索引最终指向的都是物理地址。
Q:既然有回表的存在,那么聚簇索引的优势在哪里?
Q:主键索引作为聚簇索引需要注意什么
在查询语句中使用LIke关键字进行查询时,如果匹配字符串的第一个字符为"%",索引不会使用。如果“%”不是在第一位,索引就会使用
多列索引是在表的多个字段上创建的索引,满足最左前缀匹配原则,索引才会被使用
查询语句只有Or关键字时候,如果OR前后的两个条件都是索引,这这次查询将会使用索引,否则Or前后有一个条件的列不是索引,那么查询中将不使用索引
本文将重点讲述 shell实战中的 mysql index 文件检查机制问题 请先看代码:
#!/bin/sh
def_check_index()
{
#code by scpman
#
#mail:
#需求
#
# 通过show master logs列出binlog文件序列如果顺序不对 或记录重复发告警 发邮件告警
# 查看mysql目录下的index文件 如果顺序不对 或记录重复发告警
#
#实现
#发送告警函数
def_send_mail()
{
msgip= #syslog服务器
ser_IP=`cat /etc/nf | grep E ifconfig_[em |bce ] | awk {print IP: $ } | sed n p ` #本机的ip
#echo $ 函数接收的第一个值
if [ n $ ] &&[ `echo $ |grep c chongfu ` gt ] #判断$ 是否在 并且统计下chongfu这个字符是否大于
then
echo /usr/bin/logger p h $msgip the services: $IP mysql index file $ #大于 说明有错误的 就得告警
exit
elif [ n $ ] &&[ `echo $ |grep c luanle ` gt ] #判断$ 是否在 并且统计下luanle这个字符是否大于
then
echo /usr/bin/logger p h $msgip the services: $IP mysql index file $ #大于 说明有错误的 就得告警
exit
else
echo ok
fi
}
# 判断index是否有重复的情况
def_index_is_one()
{
if [ n $ ]
then
static_index=$
def_send_mail `awk {a[$ ]++}END{for (j in a) print j a[j]} $static_index | awk v flag= $static_index {if($ >) print chongfu >$ } `
else
echo def_index_is_one $ is null!exit
exit
fi
}
#检查mysql目录下的index文件内容顺序是否正常
def_static_index_shunxu()
{
bzfile= /usr/dlm_db/mysql/zqtx bin index
current_line=`cat ${bzfile}|head n |sed e s# /zqtx bin ##g `
for i in `cat ${bzfile}`
do
if [ `echo $i|sed e s# /zqtx bin ##g ` lt $current_line ]
then
def_send_mail luanle:${bzfile}_${current_line}
exit
fi
current_line=`echo $i|sed e s# /zqtx bin ##g `
done
}
#检查mysql中show master logs的index文件内容顺序是否正常
def_masterlog_index_shunxu()
{
mysql uroot p s s e show master logs| awk {print $ } | sed e s/zqtx bin //g >/usr/dlm_db/mysql/flag_index
bzfile=/usr/dlm_db/mysql/flag_index
current_line=`cat ${bzfile}|head n `
for i in `cat ${bzfile}`
do
if [ $i lt $current_line ]
then
def_send_mail luanle:master_logs_${i}
exit
fi
current_line= $i
done
}
def_index_is_one /usr/dlm_db/mysql/zqtx bin index
def_static_index_shunxu
def_masterlog_index_shunxu
def_index_is_one /usr/dlm_db/mysql/flag_index
}
lishixinzhi/Article/program/MySQL/201311/29512
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)