
2
4 filename = 'shoplist.data'
5 # 初始化变量
6 shoplist = ['apple', 'mango', 'carrot']
7 # 以二进制写模式打开目标文件
8 f = open(filename, 'wb')
9 # 将变量存储到目标文件中区
10 pickle.dump(shoplist, f)
11 # 关闭文件
12 f.close()
13 # 删除变量
14 del shoplist
15 # 以二进制读模式打开目标文件
16 f = open(filename, 'rb'吵租)
17 # 将文件中的变量加载到当前工作区
18 storedlist = pickle.load(f)
19 print(storedlist)
登录乱态后复制
1 from sklearn.externals import joblib
2 # 保存x
3 joblib.dump(x, 'x.pkl')
4 # 加载x
5 x = joblib.load('x.pkl')
1 samples.to_pickle('samples')
2 pd.read_pickle('samples')
3
4 np.save('a'升陪兆, a)
5 a = np.load('a.npy')
# -*- coding: utf-8 -*-from sklearn.cluster import KMeans
from sklearn.externals import joblib
import numpy
final = open('c:/test/final.dat' , 'r')
data = [line.strip().split('\t') for line in final]
feature = [[float(x) for x in row[3:]] for row in data]
#调用kmeans类
clf = KMeans(n_clusters=9)
s = clf.fit(feature)
print s
#9个中心
print clf.cluster_centers_
#每个样本所属的拆碰簇
print clf.labels_
#用来评估簇的个数是否合适,距离越小说明簇分的越旅汪谈好,选取临界点的簇个数
print clf.inertia_
#进行预测
print clf.predict(feature)
#保存模型
joblib.dump(clf , 'c:/km.pkl')
#载入保存的模型
clf = joblib.load('c:/km.pkl')
'''
#用来评估簇的个数是否合适,距离越小说明簇分的越好陵岁,选取临界点的簇个数
for i in range(5,30,1):
clf = KMeans(n_clusters=i)
s = clf.fit(feature)
print i , clf.inertia_
'''
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)