
文件后缀名--详解(中文)
什么是文件名后缀
说起来Windows工作界面下的文件名简直是随心所欲,比如:某编辑部的2000年工作计划。文件名即可用中文直接表达,而且长度最长可达256个字符,让人看起来真是一目了然。然而在Windows环境中,安装的软件中却大量存在着类似CALENDAR.EXE、GAMES.GRP等等的文件名,这又是为什么呢?原来这些文件名都是根据DOS环境的文件名命名规则而定的。
DOS环境下的文件名
在DOS下,文件名采用8+3结构,即:最长8位的文件名,由小数点分隔后再跟上最长3位的后缀名,如:READ.ME、SETUP.EXE,一般情况下文件名不允许使用汉字,只能由字母、数字和一些符号组成。如READ.ME用中文理解就是"读我",即提示用户在使用软件前先看看这个文件的内容,以获取更多的提示信息。而更重要的是,DOS下规定用后缀名来区分各种不同的文件。
在DOS下最容易遇到的首先是可执行文件,后缀名有两类:*.exe、*.com(此处的*表示文件名任意),它们是由汇编语言或其它高级语言编出的程序经过编译后直接在DOS下运行的文件。有时由于软件功能多、内渣穗笑存偏小,不能一次性全部调入内存还可能有同文件名的ovl文件,如ws.exe、ws.ovl。另外还有一种文件可以直接运行,*.bat,即批处理文件,其中有许多命令或可执行文件名,主要用于提高工作效率,其中最有用的是Autoexec.bat,这个文件在开族燃机时会被自动执行(自动执行在英文中就是Automatically execute)。而另外一种可以加载但不能直接运行的文件即是系统扩展管理文件*.sys(sys即系统system),它主要提供某些非标准设备如鼠标、扩充内存等的驱动程序,如mouse.sys、himem.sys。为了统一管理还专门规定了一个config.sys的文本文件来一次性地在开机时自动调入这些必需的设备驱动程序,这些文件一旦被误删或换名或被病毒侵袭则将直接导致系统工作不正常。
DOS下字处理产生的文件原本是可以不用后缀的,但人们常用*.txt表示(txt即文本text)。被所有的平台和所有应用程序支持。而为了管理方便,人们也可以用自己的名字做后缀来表示是自己建的文本文件,如我输入的很多文章即为*.mcj,为了便于用户在意外删掉原文件的情况下能尽快恢复原文件,许多字处理系统都提供了一种自动备份的功能,如我第二次编辑JIHUA.MCJ时(JIHUA:计划的汉语拼音),系统会先拷贝一份原文件为JIHUA.BAK。使用具有特殊格式功能的字处理软件,如求伯君先生早年推出的WPS,就会规定其后缀为.wps,用以标识是用WPS生成的文本文件。当使用字处理软件编辑高级语言程序时,后缀通常为相应语言的前三个字母(如:*.BAS即BASIC语言源程序,如含*.PAS为PASCAL语言程序,*.FOR为Fortran语言程序,*.C即为C语言,*.ASM即为汇编语言程序)。
伴随着可执行文件常附有以下几类文件:*.HLP即帮助文件(help)、*.CFG即配置文件(config)、*.DAT即数据文件(data)、*.LOG即日志文件(log)、*.TMP为临时文件(temporal)。
Windows环境下的文件名
绝大多数DOS文件名后缀在Windows下继续有效,但Windows本身也引出了许多种崭新的后缀名,如:*.drv为设备驱动程序(Driver)、*.fon和*.fot都是字库文件、*.grp为分组文件(Group)、*.ini为初始化信息文件 (Initiation)、*.pif为DOS环境下的可执行文件在Windows下执行时所需要的文件格式、*.crd即卡片文件(Card)、*.rec即记录器宏文件(Record)、*.wri即文本文件(Write),它是字处理write.exe生成的文件、*.doc和*.rtf也是文本文件(Document),它们是Word产生的文件、*.cal为日历文件、*.clp是剪贴板中的文件格式、*.htm和 *.html即主页文件、*.par为交换文件、*.pwl为口令文件(Password)等等。
图像文件名后缀
进入多媒体世界后,大家会看到各种各样精彩的图片,会发现许多种后缀名。的确,由于各个公司在开发图形有关的软件时都自制标准,导致今日在图形方面有太多的格式,以下就是常见的几种格式:
首先是一种位图文件格式,它是一组点(像素)组成的图像,它们由图像程序生成或在扫描图像时创建。主要有Windows位图(.BMP):由Microsoft公司开发,它被Windows和Windows NT平台及许多应用程序支持。支持32位颜色,用于为Windows界面创建图标的资源文件格式,光标(.CUR、.DLL、.EXE):资源文件格式,用于创建Windows界面的光标。OS/2位图(.BMP):Microsoft公司和IBM开发的位图文件格式。它为各种 *** 作系统和应用程序所支持。支持压缩,最大的图像像素为64000×64000。画笔(.PCX):由Zsoft公司推出,它对图像数据也进行了压缩,可由PCX生成。用于Windows的画笔。支持24位颜色,最大图像像素是64000×64000。支持压缩。图形交换格式:
Graphics Interchage Format(.GIF):由Compu Serve创建,它能以任意大小支持图画,通过压缩可节省存储空间,还能将多幅图画存在一个文件中。支持256色,最大图像像素是64000×64000。
Kodak Photo CD(.PCD):Eastman Kodak所开发的位图文件格式,被所有的平台所支持,PCD支持24位颜色,最大的图像像素是2048×3072,用于在CD-ROM上保存照片。
Adobe Photoshop(.PSD):Adobe Photoshop的位图文件格式,被Macintosh和MS Windows平台所支持,最大的图像像素是30000×30000,支持压缩,广泛用于商业艺术。
Macintosh绘画(.MAC):Apple公司所开发的位图文件格式。被Macintosh平台所支持,仅支持单色原图,最大图像像素是576×720。支持压缩,主要用于在Macintosh图形应用程序中保存黑白图形和剪贴画片。
动画文件的后缀名
动画文件格式用于保存包含动画框架中的图形信息。主要有:Autodesk FLIC(.FLC):即.FLI,Autodesk Animator和AnimatorPro的动画文件格式。支持256色,最大的图像像素是64000×64000,支持压缩。广泛用于动画图形中的动画序列、计算机辅助设计和计算机游戏应用程序。不大适合制作真实世界图像动画。
MacPICTS(.PCS,.PIC):Macromedia开发的动画文件格式,为Macintosh应用程序使用。支持256色,支持压缩,用于保存动画数据,是Quick Time的前身。
Microsoft资源互换文件格式,TIFF(.AVD):Microsoft公司开发的动画文件格式,被Windows、Windows
NT平台和OS/2多媒体应用程序所支持,支持256色和压缩,用于在多媒体应用程序中保存音频、视频和图形信息。
MPEG(.MPEG):国际标准化组织的运动图像专家小组开发的动画文件格式。被所有平台和Xing Technologies
MPEG播放器及其它应用程序所支持,支持压缩,最大图像像素是4095×4094×30帧/每秒。用于编码音频、视频、文本和图形数据。
Quick Time(.QTM):Apple计算机公司开发的动画文件格式。被Apple Macintosh和Microsoft
Windows平台所支持,支持25位颜色,最大图像像素是64000×64000,支持压缩,用于保存音频和运动视频信息。
声音文件的后缀名
声音文件格式是用于保存数字音频信息的。它们主要有:
AIFF(.AIF):这是Apple计算机公司开发的声音文件格式,被Macintosh平台和应用程序所支持。支持压缩。
Amiga声音(.SVX):Commodore所开发的声音文件格式,被Amiga平台和应用程序所支持,不支持压缩。
MAC声音(.SND):Apple计算机公司开发的声音文件格式,被Macintosh平台和多种Macintosh应用程序所支持,支持某些压缩。
MIDI(.MID):国际MIDI协会开发的声音文件格式,被Windows平台和许多应用程序所支持,用于为乐器创建数字声音。
声霸(.VOC):Creative Labs公司开发的声音文件格式,被Windows和DOS平台所支持,支持压缩。
WAVE(.WAV):微软公司用作Windows平台上保存音频信息的资源格式。
压缩文件的后缀名
为了提高存储效率,许多公司都推出了压缩数据的方法和相应的软件,这类文件的使用主要通过压包和解包软件来进行,主要的后缀有:*.zip、*.arj、*.rar、*.lzh、*.jar。还有一些专用的压缩文件,如:*.ex_、*.dl_、*.d3_、*.cab等。
数据库类文件的后缀名
在Dbase、FoxBase、Foxpro系列软件的环境下有以下几类后缀:
.dbf 数据库文件(databasefile) .prg 命令文件(即程序Program)
.fxp 编译后的程序 .scx和.sct 屏幕文件
.fpt 备注字段文件 .frx和.frt 报表文件
.cbx和.pjt 标签文件 .mnx 和.mnt 菜单文件
.pjx和.pjt 工程文件 .app 应用文件
.cdx和.idx 索引文件 .qpr和.qpx SQL查询文件
.fp 配置文件 .ap 生成应用
.err 编译错误文件 .men 内存应用
.fky 键宏文件 .win 窗口文件
.pcb 库文件 .tmp 临时文件
.tbk 临时数据库文件
可安全删除的文件类型
临时文件:*.tmp,*.syd,*.$$$,*.@@@,*._mp,*.gid,*.~*,*.gts
备份文件:*.bak,*.old,*.wbk,*.xlk,*.ckr_
帮助文件:*.hlp、*.chm、*.cnt
后记
用户要注意在不同的 *** 作系统下,后缀名的约定会有所不同,如在Unix下,*.p代表Pascal语言程序,*.z代表压缩文件,*.tar代表归档文件。另外,针对极特殊的设备,其驱动程序也会有特殊的后缀,如3DS显示卡的驱动程序是*.exp。还有某些公司针对自己的产品也规定了文件名后缀,如方正公司的图像排版文件规定用*.grh(即Graph)。
文件名的后缀代表着某一种类型的文件,一般会由某一种特定的软件产生和处理。只有对这些后缀名的知识有一定的了解,才能在上机的过程中知道其所以然。这儿带着大家看到了常见的一些后缀类型,实际上还有很多类型,不可能全部讲完。常言说,师傅领进门,修行在个人,以后大家在计算机世界中自己转着看吧。
常见的文件后缀名
.ACA
Microsoft的代理使用的角色文档
.acf
系统管理配置
.acm
音频压缩管理驱动程序,为Windows系统提供各种声音格式的编码和解码功能
.aif
声音文件,支持压缩,可以使用Windows Media Player和QuickTime Player播放
.AIF
音频文件,使用Windows Media Player播放
.AIFC
音频文件,使用Windows Media Player播放
.AIFF
音频文件,使用Windows Media Player播放
.ani
动画光标文件扩展名,例如动画沙漏。
.ans
ASCII字符图形动画文件
.arc
一种较早的压缩文件,可以使用WinZip,WinRAR,PKARC等软件打开
.arj
压缩文件。可以使用WinZip,WinRAR,PKARC等软件打开
.asf
微软的媒体播放器支持的视频流,可以使用Windows Media Player播放
.asp
微软的视频流文件,可以使用Windows Media Player打开
.asp
微软提出的Active Server Page,是服务器端脚本,常用于大型网站开发,支持数据库连接,类似PHP。可以使用Visual InterDev编写,是目前的大热门
.asx
Windows Media 媒体文件的快捷方式
.au
是Internet中常用的声音文件格式,多由Sun工作站创建,可使用软件Waveform Hold and Modify 播放。Netscape Navigator中的LiveAudio也可以播放.au文件
.avi
一种使用Microsoft RIFF规范的Windows多媒体文件格式,用于存储声音和移动的图片
.bak
备份文件,一般是被自动或是通过命令创建的辅助文件,它包含某个文件的最近一个版本,并且具有于该文件相同的文件名
.bas
Basic 语言源程序文件,可编译成可执行文件,目前使用Basic开发系统的是Visual Basic
.bat
批处理文件,在MS-DOS中,.bat文件是可执行文件,有一系列命令构成,其中可以包含对其他程序的调用
.bbs
电子告示板系统文章信息文件
.bfc
Windows的公文包文件
.bin
二进制文件,其用途依系统或应用而定
.bmp
Bitmap位图文件,这是微软公司开发Paint的自身格式,可以被多种Windows和Windows NT平台及许多应用程序支持,支持32位颜色,用于为Windows界面创建图标的资源文件格式。
.c
C 语言源程序文件,在C语言编译程序下编译使用
.cab
Microsoft制订的压缩包格式,常用于软件的安装程序,使用Windows自带的实用程序,Extract.exe可以对其解压缩,WinZip,WinRAR等都支持这种格式
.cal
Windows 中的日历文件
.cdf
Internet Explorer的频道文件
.cdr
CorelDraw中的一种图形文件格式,它是所有CorelDraw应用程序中均能够使用的一种图形图像文件格式
.cdx
索引文件,存在于Dbase,Foxbase,Foxpro系统软件环境下
.cfg
配置文件,系统或应用软件用于进行配置自己功能,特性的文件
.chm
编译过后的HTML文件,常用于制作帮助文件和电子文档
.clp
在Windows下剪贴板中的文件格式
.cmd
用于Windows NT/2000的批处理文件,其实与BAT文件功能相同,只是为了与DOS/Windows 9x下的BAT有所区别
.cmf
声卡标准的音乐文件,FM合成器等可以回放
.cnf
NetMeetting会议连接文件
.cnt
联机帮助文件目录索引文件,通常和同名的.hlp文件一起保存
.col
由Autodesk Animator,Autodesk Animator Por等程序创建的一种调色板文件格式,其中存储的是调色板中各种项目的RGB值
.com
DOS可执行命令文件,一般小于64KB
.cpl
控制面板扩展文件,Windows *** 作系统使用
.cpp
C++语言源程序,非常强大的语言,在各种平台中都有相应的开发系统
.crd
Windows中的卡片文件
.crt
用于安全方面的证书认证文件
.cur
Windows下的光标资源文件格式,可用光标编辑软件编辑
.css
Text/css文件
.dat
数据文件,在应用程序中使用
.dat
VCD中的图象声音文件,VCD播放软件可调用,或是通过VCD机播放
.dbf
数据库文件,Foxbase,Dbase,Visual FoxPro,等数据库处理系统所产生的数据库文件
.dcx
传真浏览文档文件
.ddi
映象文件,DUP,HD,IMG等工具可展开
.dev
设备驱动程序
.dib
设备无关位图文件,这是一种文件格式,其目的是为了保证用某个应用程序创建的位图图形可以被其它应用程序装载或显示一样
.dir
目录文件
.dll
Windows动态连接库,几乎无处不在,但有时由于不同版本DLL冲突会造成败各种各样的问踢
由于地面天文台和望远镜观测宇宙存在的不足,很早就有科学家提出建议将望远镜发射到地球轨道上。
1946年,美国天文学家斯皮策发表论文《地外天文台的天文学研究价值》,呼吁 在地球轨道上建造天文台 。但当时人类尚未进入航天时代,这一设想过于激进。
航天时代开始后的20世纪60年代,随着一系列小型天文卫星的发射,天文卫星的巨大价值被证实。
1970年,美国宇航局计划建造大型的太空望远镜,但 经费预算 受到国会的阻挠,宇航局公共预算的削减,使大型太空望远镜项目难以取得进展。
在美国科学界的多年游说之下,国会终于为太空望远镜项目批准了资金,但 规模只有预计的一半 。
宇航局只能将原计划的3米口径望远镜改为2.4米,对望远镜其他设备也予以简冲举化,同时寻求与欧空局合作以分担费用。
在此情况下,美国国会于1978年批准了大型太空望远镜项目的投资 3600万美元 。
美国宇航局计划该望远镜能够在1983年由航天飞机发射,并以著名科学家爱德华·哈勃的名字进行命名—— 哈勃太空望远镜(HST) 。
HST的研制
由于种种原因,HST的研制并非一帆风顺,1986年,航天飞机挑战者号的失事更是使进度大大拖延。
进入90年代,宇航局陆续制定了多项天文卫星计划,其中包括 四大重器 ——HST、康普顿伽马射线天文台(1991-2000年)、钱德拉X射线天文台(1999年至今)和斯皮策太空望远镜(2003-2020年),它们的侧重点不同,其中HST主要以 可见光观测 为主,但发射入轨后经过多次维修,其观测光谱范围得到了很大的拓展。
HST研制采取 招标方式 , 望远镜主体 由防务供应商洛克希德公司研制和系统集成, 大型光学望远镜 由珀金·埃尔默公司研制。
宇航局马歇尔航天中心负责整个项目的 设计、招标与管理工作 ,哥达德航天中心负责 科学仪器 及望远镜 后期运行工作 。
HST整体呈柱形结构,安装了2个太阳电池板,展开后的最大宽度可达13.7米,望远镜主体长13.2米,直径4.27米,发射质量12.5吨,太阳能电池可提供 2800瓦的功率 。
为保持 姿态稳定 和 进行姿态调整 ,HST上安装了6台大型陀螺仪和种种推力器。陀螺仪是动部件,长期运行的失效率高,采用航天飞机进行维护维修,可极大地延长其使用寿命。HST能够正常使用达30年,与其 可维护性强 关系极大。
HST由 光学部段判肆件 、 科学仪器 、 保障系统 3大部件系统组成。
光学部件是一架 卡塞格伦式光学望远镜 ,采用 双曲面设计 的主副镜。入射光由3米宽的舱门进入,射到直径2.4米的主镜上,再反射到在它前面4.88米处的副镜上。副镜将光线聚焦后再返回到主镜,从主镜中央小孔穿过到达焦平面握轿。双曲线反射镜在大视场下具有良好的 成像性能 ,但反射镜的形状难以制造和测试。
HST的反射镜和光学系统决定了最终的性能,必须 严格按照规格设计 。
光学望远镜的镜面通常经过精细抛光,精度约为 可见光波长的十分之一 (10纳米)。由于承包公司在光学部件特别是主副镜制作和抛光过程中,一再出现精度等问题,致使整个望远镜的交付日期多次推迟。
光学系统计划用于 从可见光到紫外线 (较短波长)的观测,并防止衍射干扰,以充分利用空间环境。
由于反射镜要通过加热器保持在15 的温度,而这个温度会对红外观测造成很大干扰,HST的 红外观测性能不高 。
安装光学系统和仪器的望远镜主体也是一个重大的工程挑战。它必须能够承受太阳直射到黑暗的地球阴影中的 频繁转换 ,由此会带来很大的 温度变化 。而且望远镜还必须 足够稳定 ,使其能够极其精确地进行指向。
多层隔热罩和轻质铝外壳使望远镜内的 温度保持稳定 ,探测仪器能够在适宜的环境工作。
在外壳内, 石墨环氧框架 使望远镜的各动部件牢固对齐。由于石墨复合材料具有吸湿性,在测试中发现,桁架吸收的水蒸气有可能在真空环境下释放出来,导致望远镜的仪器结冰。因此,在将望远镜发射到太空之前须利 用氮气进行净化 ,消除水汽。
望远镜本身的制造则由于 预算问题 使进度延误。
望远镜安装的5个主要仪器覆盖范围为 电磁光谱的紫外线、可见光和部分近红外区域 。
HST在地球大气畸变之外的轨道运行,能够在比地面望远镜低得多的背景光下拍摄 极高分辨率 的图像。 大口径望远镜 和 优良的观测环境 ,使它能够观测记录到最详细的可见光图像。
这5个仪器分别是: 广角行星照相机 、 暗弱天体照相机 、 暗弱天体摄谱仪 、 戈达德高分辨率摄谱仪 和 高速光度计 。
望远镜上还装有 精确制导敏感器 ,它可测出HST到目标天体的距离,测量精度是地面望远镜的 10倍 。
HST的观测能力大大超过了地面所有光学望远镜和已有的天基望远镜,估计能观测到27星等的恒星,比地面上5米口径望远镜观察到的星光暗50倍。
可以这样形象地比喻其分辨率之高:相当于从华盛顿看到1.5万千米外悉尼的1只萤火虫发出的光亮,或从地球上看到月球上1支手电筒发出的光。
它观测的距离可达140亿光年,几乎可以 看到宇宙诞生时的景象 。基于这些突出的优点,全世界的科学家都对HST寄予很大希望。
HST的发射与初期应用
1990年4月24日 ,航天飞机发现号在执行STS-31飞行任务时,将HST成功送入地球轨道。
它的轨道高度为537.0 540.9千米的近圆近地轨道,轨道倾角28.47 ,运行周期95.42分钟。
在HST发射时,美国宇航局在该项目上花费了大约47亿美元。如按2015年美元计算,累计成本估计约为 113亿美元 ,其中包括所有后续维护与维修成本。这使其成为 美国宇航局 历史 上最昂贵的单一科学任务 。
HST入轨后,地面观测和监视人员对它进行了 校准工作 ,在此过程中发现了问题。
6月14日,技术人员为了使HST的聚焦达到最佳状态,发出指令调整望远镜的副镜,但始终无法使聚焦达到最佳。
此后的两个星期内,技术人员全面检查HST的聚焦功能,发现主镜和副镜中可能有一个镜片存在着 球面像差 的质量问题。经过分析认为,这个故障是由于主镜在加工时边缘部分被多磨去了0.002毫米,从而出现球面像差造成。
另外,望远镜上的太阳电池板金属支架也因反复进出地球阴影导致热胀冷缩而发生 周期震动 ;用于保持望远镜精确定向的6台陀螺仪传感器有3个 发生故障 ;望远镜上主计算机的6个存贮器有1个 失效 ,另1个部分失效。
主镜加工存在问题几乎是一个不可原谅的过失,此后两年多时间,宇航局一直在想办法修复HST存在的故障,并且千方百计利用它进行一些力所能及的观测活动。
尽管如此,HST投入天文观测后仍获得了一些重大发现。
它的最初目的是通过对中子星、脉冲星、类星体和黑洞的观测,深入研究宇宙的 起源、结构、组成和演化 等难题。
1991年,HST成功地观测到距离地球17万光年的大麦哲伦星云旗鱼座的第三个 轮形星云 ;拍摄了 超新星1987A 的清晰照片;重新量度了 大麦哲伦星云的距离 为169000 5%光年,精确度较以往大幅提高。
1992年初,美国天文学家托德·劳尔在亚特兰大的一次会议上根据HST发回的资料,公布了一项十分惊人的大发现:首次在银河系临近M87的星系中央, 确认存在一个巨大的黑洞 ,这是证明黑洞存在的 最直接证据 。
1992年4月,HST发现了一颗 最亮的恒星 ,其温度比太阳高33倍。1992年5月,它发现宇宙中最古老的星系有 新星形成 。
HST的五次维修
为使HST“看得更清”,宇航局制定了详细的 修复方案 ,设计了专用工具,宇航员也进行了地面模拟维修训练。
1993年12月2日,奋进号航天飞机肩负着修复HST的重任发射升空,7名经验丰富的宇航员随机带去了280多件专门设计的工具。
1993年12月4日,宇航员 *** 纵15米长的机械臂捕获了HST,并将其放入载荷舱内。
12月5 9日,宇航员外分两组出舱活动,对望远镜进行修复。他们完成的 主要工作 有:更换了3台速率陀螺仪,安装了陀螺仪电子控制装置和8个保险丝,拆除两块太阳电池板并更换了新的太阳电池板;更换了望远镜上的宽视场行星相机;更换了两台磁场计。
其中12月8日的修理工作最为关键。宇航员为哈勃望远镜安装了球面象差光学校正系统—— 太空望远镜光学矫正替换箱 ,它内部装有5个钱币大小的透镜,用于矫正望远镜的视线,使其精确聚焦。
9日,将新安装的太阳电池板展开,更换了电池板的电子装置。10日,宇航员用机械臂将修理一新的望远镜送回轨道,还将望远镜的轨道提高了几千米,至此修复工作全部完成。
12月13日,宇航员乘航天飞机返回地面。
修复后HST取得了明显的效果,甚至“超过了预期的目标”,包括了几方面的重大改进:清晰度 提高了50% 、可看到 更暗的天体 、可显示 更大的明暗对比 、科学家可对拍摄到的图像进行 定量分析 。
宇航局曾公布了两张HST拍摄的距地球5000万光年的M-100星系的照片,一张是1993年11月27日未修复时拍摄的,一张是12月31日修复后拍摄的, 清晰度和分辨率 大为提高。
这次修复工作耗资惊人,估计费用达6.29亿美元,其中更换部件及有关活动的费用2.51亿美元;航天飞机飞行费3.78亿美元。
从完成任务之重要和难度之大两方面看,这次HST的修理工作是自阿波罗计划以来, 最复杂、最困难 的航天活动。
1997年2月11 21日,航天飞机发现号在执行STS-82任务时,宇航员对HST进行了第二次维修。
此次维修利用机械手臂把HST捕获后,停放在被之为飞行支持系统的 *** 作平台上,使发现号和HST之间建立一个脐带式连接方式,以便为望远镜提供电力和数据服务。
第一次出舱活动 ,宇航员把戈达德高分辨率光谱仪和微弱目标光谱仪拆下放入轨道器的有效载荷舱内,然后把扫描分光仪、近红外照相机及多目标分光仪安装在HST上。接着,地面控制人员发送指令要求检查上述设备的状况。
第二次出舱活动 ,宇航员用升级的备份传感器更换了退化的精密导航传感器,更换了一个数据记录器,安装了一个优化控制的电子增强型工具来提高精密导航传感器的性能。然后宇航员和地面控制人员对HST隔热层的几个被损坏的部分进行评价测定。地面控制人员和宇航员对破损的严重程度以及可能的维修方式进行了估价。
第三次出舱活动 ,宇航员拆卸并更换了一个数据接口单元,用一台新式的固态记录器取代了老式的转轮记录器,以便以数字方式存储数据,并且可以同步记录和回访数据。在此期间,发现号轨控推力器重新点火,以稍微提高HST的运行轨道。然后宇航员更换了望远镜上的一个反作用轮装置。
第四次出舱活动 ,宇航员更换了一个太阳能电池驱动的电子仪器盒,安放在HST的磁力计(用于确定HST在地磁场中的位置)上方。宇航员还维修了破损的隔热层,在两处破损的隔热层上放置了由多层隔热材料组成绝热层。
第五次出舱活动 主要是维修破损的绝热层,在三处破损的绝热层上加绝热材料。
至此,HST的第二次维修工作结束。宇航员利用轨道器的机械臂,把HST移动到轨道器的有效载荷舱外。在HST和机械臂仍连在一起时,地面控制人员发送指令,要求打开望远镜的快门。最后,HST释放到一个 较高的运行轨道 上。
1999年12月19~27日,航天飞机发现号执行STS-103飞行任务时完成第三次维修,此次维修规模较小。
宇航员在 三次舱外活动 期间,为HST安装了3个用来瞄准星体的导航传感器、1个新的无线电收发机、1个数据记录器和1个用来保护免受太阳热力伤害的护罩。
宇航员还在舱外为望远镜更换了所有6个陀螺仪,安装了1台486计算机,新系统的速度快了20倍,贮存器增加6倍,可大大提高HST 追踪移动目标 的能力和瞄准能力。
第四次维修是在2002年3月1~12日,由哥伦比亚号航天飞机在执行STS-109飞行任务时完成。
宇航员在3月4日进行 第一次舱外活动 ,更换了HST上的一块太阳能电池板。受温度极端变化和太空辐射的影响,原有太阳能电池板的供电效率下降了近40%,而且还出现了一些结构和电路方面的问题。新安装的太阳能电池板长7米,宽约2.7米,尺寸只有原来的三分之二,但产生的电能却多出20%以上,而且在飞行中所受的阻力相对较小,可以减少对望远镜运行轨道高度的影响。
3月6日,宇航员在 第二次舱外活动 期间,为HST更换了一个新的电源控制设备,并为望远镜装上了一个新的观测仪——先进测绘照相机,换下了原有的暗弱天体照相机。先进测绘照相机可使哈勃望远镜看得更深、更远、更清晰,其天文观测能力预计将提高10倍以上。
而随着暗弱天体照相机的拆除,HST原有的观测仪器已被 全部更换 。
3月8日,宇航员进行最后一次太空行走,此次为望远镜安装了一套新的冷却系统,使一架失灵的近红外照相机和多目标分光计能重新投入工作。
测试表明,HST新换的所有设备都“运行良好”,维修后望远镜的 观测能力上升了一个数量级 。
宇航局原计划在2005年2月为HST提供第五次维修,但2003年的哥伦比亚号航天飞机事故对宇航局维修计划和其他任务产生了很大影响。
之后经过多次讨论,最终决定由亚特兰蒂斯号航天飞机在2008年10月完成为期11天的维修任务。但由于种种原因,维修任务又推迟到下一年度。
2009年5月11~24日,航天飞机亚特兰蒂斯号执行STS-125任务,对HST进行了第五次维修。
此次维修,宇航员共进行了 5次舱外活动 ,安装了一个航天器捕捉装置,以便在望远镜寿命结束时脱离轨道。
宇航员还更换了科学仪器管理设备和数据处理单元;安装了新的观测仪器——宽视角摄像机3(WFC3)和宇宙起源频谱仪(COS);维修了高级巡天相机(ACS)和成像光谱仪(STIS);安装了改进的镍氢电池;更换了包括所有六个陀螺仪在内的其他部件。
除了无法维修已经失效的高级巡天相机的高分辨率通道,第五次维修任务期间完成所有工作, 使HST功能全面恢复 。
由于结构限制,除光学望远镜外,HST可容纳5台科学仪器和精密制导传感器。这些传感器主要用于望远镜精确对准,偶尔也用于天体科学测量。
在航天飞机五次维修任务中,早期安装的5台仪器已经 完全被更先进的仪器所取代 。
在2009年维修任务后,5台科学仪器分别是 高级巡天相机 (ACS)、 宽视角相机3 (WFC3)、 宇宙起源频谱仪 (COS)、 成像光谱仪 (STIS)和 近红外相机及多目标分光计 (NICMOS)。这些更换后的仪器表明,HST以后的任务更加重视 宇宙起源、早期星系形成与演化 方面的 探索 与研究。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)