![[傅里叶变换公式] 常见函数的傅里叶级数,第1张 [傅里叶变换公式] 常见函数的傅里叶级数,第1张](/aiimages/%5B%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2%E5%85%AC%E5%BC%8F%5D+%E5%B8%B8%E8%A7%81%E5%87%BD%E6%95%B0%E7%9A%84%E5%82%85%E9%87%8C%E5%8F%B6%E7%BA%A7%E6%95%B0.png)
第2章 信号分析
本章提要
信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质
信号:反映研究对象状态和运动特征的物理量 信号分析:从信号中提取有用信息的方法和手段
§2-1 信号的分类
两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。
进一步分为:周期信号,非周期信号。
x(
质量-d簧系统的力学模型
非确定性信号(随机信号):给定条件下
取值是不确定的 按取值情况分类:模拟信号,离散信号
数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号
频域描述
以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。
§2-2 周期信号与离散频谱
一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式
T:周期。注意n的取值:周期信号“无始无终”
#
傅里叶级数的三角函数展开式
(,…)
傅立叶系数:
式中 T--周期;0--基频, 0=2/T。 三角函数展开式的另一种形式:
周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图
周期信号的频谱三个特点:离散性、谐波性、收敛性
例1:求周期性非对称周期方波的傅立叶
级数并画出频谱图 解:
解:
信号的基频
傅里叶系数
n次谐波的幅值和相角
最后得傅立叶级数
频谱图
二、 周期信号傅里叶级数的复指数形式
欧拉公式
或
傅立叶级数的复指数形式
复数傅里叶系数的表达式
其中an,bn的计算公式与三角函数形式相同,只是n包括全部整数。 一般cn是个复数。
因为an是n的偶函数,bn是n的奇函数,因此
#
即:实部相等,虚部相反,cn与c-n共轭。
cn的复指数形式
共轭性还可以表示为
即:cn与c-n模相等,相角相反。 傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0
(等于三角
函数模的一半)
相角相等)
用cn画频谱:双边频谱
第一种:幅频谱图:|cn|-图:n-
相频谱,
第二种:实谱频谱图:Recn-,虚频谱图:
Imcn-;也就是an-和-bn- #
§2-3 非周期信号与连续频谱
分两类: a准周期信号
定义:由没有公共周期(频率)的周期信号组成
频谱特性:离散性,非谐波性 判断方法:周期分量的频率比(或周期比)不是有理数 b瞬变非周期信号
几种瞬变非周期信号
数学描述:傅里叶变换 一、 傅里叶变换
演变思路:视作周期为无穷大的周期信号 式(222)借助(216)演变成:
定义x(t)的傅里叶变换X(ω)
X(ω)的傅里叶反变换x(t):
傅里叶变换的频谱意义:一个非周期信号可以分解为角频率 连续变化的无数谐波
的叠加。称X()其为函数x(t)的频谱密度函
数。 对应关系:
X()描述了x(t)的频率结构
X()的指数形式为
以频率 f (Hz)为自变量,因为f =w/(2p),得
X( f ) 频谱图
幅值频谱图和相位频谱图:
幅值频谱图
相位频谱图
()
实频谱图ReX(ω)和虚频谱图Im(ω
) 如果X()是实函数,可用一张X()图表示。负值理解为幅值为X()的绝对值,相角为或。
二、 傅里叶变换的主要性质 (一)叠加性
(二)对称性
(注意翻转)
(三)时移性质
(幅值不变,相位随 f 改变±2ft0) (四)频移性质
(注意两边正负号相反) (五)时间尺度改变特性
(六)微分性质
(七)卷积性质
(1)卷积定义
(2)卷积定理
三、 脉冲函数及其频谱 (一) 脉冲函数:
(t)
0)
定义函数(要通过函数值和面积两方面定义) 函数值:
脉冲强度(面积)
(二)脉冲函数的样质 1. 脉冲函数的采性(相乘)样质:
xx(t0)(tt0)
函数值:
强度:
结论:1结果是一个脉冲,脉冲强度是x(t)
在脉冲发生时刻的函数值
2脉冲函数与任意函数乘积的积分等于该函数在脉冲发生时刻的的值。 2. 脉冲函数的卷积性质: (a) 利用结论2
(b) 利用结论2
结论:平移
x(t
(三)脉冲函数的频谱
均匀幅值谱
由此导出的其他3个结果
(利用时移性
质)
(利用对称性
质)
(对上式,
再用频移性质)
(四)正弦函数和余弦函数的频谱
余弦函数的频谱
(f)
正弦函数的频谱
(f)
物理意义有以下几点:
1。频率的概念就是从机械旋转运动来的,
定义为角速度,对于周期运动,角速度也就是角频率。通常
θ
以反时针为正,因此转动的正频率是反时针旋转角速度,负频率就是顺时针旋转角速度。这就是它的物理意义,正、负号不影响它的物理意义。
2。电的单位向量(电压或电流)围绕原愕淖梢杂表示,这是在电路中都清楚的。
θ
的正负所代表的物理意义从未有什么争议,它的导数
的物理意义不言自明,取正取负都不影响定义,为什么取负就会失去物理意义了呢?
3。在信号与系统课程中,为了简化问题,便于初学者掌握概念,开宗明义地把研究范围限定于实信号
f(t)
,也就是在电压旋转向量
中,只研究它在实平面或虚平面上的一个投影-sin(
ω
t)或cos(
ω
t),研究复信号
的特性与只研究实信号sin(
ω
t)或cos(
ω
t)
是两个不同的层次。前者是反映信号在空间的全面特性,后者只研究了信号在一个平面(x-t或y-t
x-t或y-t
θ
,更看不到
ω
,只有在x-y平面上才能看到这两个参数。
4。同样,用
或sin(
ω
t)或cos(
ω
t)作为核来做傅立叶变换所得的结果也是前者全面,后者片面。对实信号做傅立叶变换时,如果按指数
求,我们将得到双边频谱。以角频率为
ω
的余弦信号为例,它有具有位于
±ω
两处的,幅度各为0。
lni=i(π/2+2kπ),k是整数。
解答过程如下:
(1)Ln是对数函数。其反函数是指数函数,可以利用这个关系来求解。
(2)设z=Lni,则e^z=i=0+1i=exp(iπ/2)=exp[i(π/2+2kπ)],其中k是整数。
(3)所以z=i(π/2+2kπ),k是整数。
(4)特别地,当k=0的时候,Lni取得主值,为lni=π/2。
复变数复值函数
设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为
w=ƒ(z)
这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)