[傅里叶变换公式] 常见函数的傅里叶级数

[傅里叶变换公式] 常见函数的傅里叶级数,第1张

第2章 信号分析

本章提要

 信号分类  周期信号分析--傅里叶级数  非周期信号分析--傅里叶变换  脉冲函数及其性质

信号:反映研究对象状态和运动特征的物理量 信号分析:从信号中提取有用信息的方法和手段

§2-1 信号的分类

两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。

进一步分为:周期信号,非周期信号。

x(

质量-d簧系统的力学模型

非确定性信号(随机信号):给定条件下

取值是不确定的  按取值情况分类:模拟信号,离散信号

数字信号:属于离散信号,幅值离散,并用二进制表示。  信号描述方法 时域描述 如简谐信号

频域描述

以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱

一、 周期信号傅里叶级数的三角函数形式  周期信号时域表达式

T:周期。注意n的取值:周期信号“无始无终”

#

 傅里叶级数的三角函数展开式

(,…)

傅立叶系数:

式中 T--周期;0--基频, 0=2/T。  三角函数展开式的另一种形式:

周期信号可以看作均值与一系列谐波之和--谐波分析法  频谱图

 周期信号的频谱三个特点:离散性、谐波性、收敛性

例1:求周期性非对称周期方波的傅立叶

级数并画出频谱图 解:

解:

信号的基频

傅里叶系数

n次谐波的幅值和相角

最后得傅立叶级数

频谱图

二、 周期信号傅里叶级数的复指数形式

 欧拉公式

 傅立叶级数的复指数形式

 复数傅里叶系数的表达式

其中an,bn的计算公式与三角函数形式相同,只是n包括全部整数。  一般cn是个复数。

因为an是n的偶函数,bn是n的奇函数,因此

#

即:实部相等,虚部相反,cn与c-n共轭。

 cn的复指数形式

共轭性还可以表示为

即:cn与c-n模相等,相角相反。  傅立叶级数复指数也描述信号频率结构。它与三角函数形式的关系 对于n>0

(等于三角

函数模的一半)

相角相等)

用cn画频谱:双边频谱

第一种:幅频谱图:|cn|-图:n-

相频谱,

第二种:实谱频谱图:Recn-,虚频谱图:

Imcn-;也就是an-和-bn- #

§2-3 非周期信号与连续频谱

分两类: a准周期信号

定义:由没有公共周期(频率)的周期信号组成

频谱特性:离散性,非谐波性 判断方法:周期分量的频率比(或周期比)不是有理数 b瞬变非周期信号

几种瞬变非周期信号

数学描述:傅里叶变换 一、 傅里叶变换

演变思路:视作周期为无穷大的周期信号 式(222)借助(216)演变成:

定义x(t)的傅里叶变换X(ω)

X(ω)的傅里叶反变换x(t):

 傅里叶变换的频谱意义:一个非周期信号可以分解为角频率 连续变化的无数谐波

的叠加。称X()其为函数x(t)的频谱密度函

数。  对应关系:

X()描述了x(t)的频率结构

X()的指数形式为

 以频率 f (Hz)为自变量,因为f =w/(2p),得

X( f ) 频谱图

幅值频谱图和相位频谱图:

幅值频谱图

相位频谱图

()

实频谱图ReX(ω)和虚频谱图Im(ω

) 如果X()是实函数,可用一张X()图表示。负值理解为幅值为X()的绝对值,相角为或。

二、 傅里叶变换的主要性质 (一)叠加性

(二)对称性

(注意翻转)

(三)时移性质

(幅值不变,相位随 f 改变±2ft0) (四)频移性质

(注意两边正负号相反) (五)时间尺度改变特性

(六)微分性质

(七)卷积性质

(1)卷积定义

(2)卷积定理

三、 脉冲函数及其频谱 (一) 脉冲函数:

(t)

0)

定义函数(要通过函数值和面积两方面定义) 函数值:

脉冲强度(面积)

(二)脉冲函数的样质 1. 脉冲函数的采性(相乘)样质:

xx(t0)(tt0)

函数值:

强度:

结论:1结果是一个脉冲,脉冲强度是x(t)

在脉冲发生时刻的函数值

2脉冲函数与任意函数乘积的积分等于该函数在脉冲发生时刻的的值。 2. 脉冲函数的卷积性质: (a) 利用结论2

(b) 利用结论2

结论:平移

x(t

(三)脉冲函数的频谱

均匀幅值谱

由此导出的其他3个结果

(利用时移性

质)

(利用对称性

质)

(对上式,

再用频移性质)

(四)正弦函数和余弦函数的频谱

余弦函数的频谱

(f)

正弦函数的频谱

(f)

物理意义有以下几点:

1。频率的概念就是从机械旋转运动来的,

定义为角速度,对于周期运动,角速度也就是角频率。通常

θ

以反时针为正,因此转动的正频率是反时针旋转角速度,负频率就是顺时针旋转角速度。这就是它的物理意义,正、负号不影响它的物理意义。

2。电的单位向量(电压或电流)围绕原愕淖梢杂表示,这是在电路中都清楚的。

θ

的正负所代表的物理意义从未有什么争议,它的导数

的物理意义不言自明,取正取负都不影响定义,为什么取负就会失去物理意义了呢?

3。在信号与系统课程中,为了简化问题,便于初学者掌握概念,开宗明义地把研究范围限定于实信号

f(t)

,也就是在电压旋转向量

中,只研究它在实平面或虚平面上的一个投影-sin(

ω

t)或cos(

ω

t),研究复信号

的特性与只研究实信号sin(

ω

t)或cos(

ω

t)

是两个不同的层次。前者是反映信号在空间的全面特性,后者只研究了信号在一个平面(x-t或y-t

x-t或y-t

θ

,更看不到

ω

,只有在x-y平面上才能看到这两个参数。

4。同样,用

或sin(

ω

t)或cos(

ω

t)作为核来做傅立叶变换所得的结果也是前者全面,后者片面。对实信号做傅立叶变换时,如果按指数

求,我们将得到双边频谱。以角频率为

ω

的余弦信号为例,它有具有位于

±ω

两处的,幅度各为0。

lni=i(π/2+2kπ),k是整数。

解答过程如下:

(1)Ln是对数函数。其反函数是指数函数,可以利用这个关系来求解。

(2)设z=Lni,则e^z=i=0+1i=exp(iπ/2)=exp[i(π/2+2kπ)],其中k是整数。

(3)所以z=i(π/2+2kπ),k是整数。

(4)特别地,当k=0的时候,Lni取得主值,为lni=π/2。

复变数复值函数

设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为

w=ƒ(z)

这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=ƒ(z)就对应着一对两个实变数的实值函数。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13495107.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存