
其实多元函数的偏导数可以理解为一元函数导数的一种延伸情况。之所以称之为偏导数,是因为在该函数中有两个或者以上的元,如x,y,z等,当对x元求偏导数时,我们就可以把y,z等其他元看作是常数,这样其实就可以理解为该函数就是关于x的一元函数,在求导时理论与规则完全和一元函数一样;同理适用于对y,z等其他元求偏导。但是为了区分一元与多元之间的区别,在书写上便产生了差异,其实书写只是一种代表符号,真正理解起来可以完全按照一元的思想向多元函数进行演化和推理。二者不同的是,一元函数只能是对一个元多次求导,但是多元函数可以先对x求偏导,在对x求偏导的基础上再对y,z等求偏导。
希望我回答能对你的理解有帮助~~~
1函数可微,偏导数存在
2函数的各方向导数存在,则偏导数存在
其实,偏导数存在与否可以从一元函数的角度考虑,因为把多元函数中的其他变量都固定后,就可以看成是一元函数了,所以一元函数的导数存在条件可以平行的搬到多元函数的偏导数存在条件上来。
对偏导数积分,只需把积分把其他变量看作常数,对被积变量按照一元函数的积分法则进行积分即可。
例如,有一函数如下(以对y求积分为例,对x求与对y求法相同,不做赘述):
下面对y进行积分,只需把x看作常数,形式如下:
对y积分,于是得
最后,将A,B回代,得到积分后的方程设为G
这类问题一般都是证明在某点处偏导数存在,注意这时切记不能使用求导公式,以一元函数为例,这是因为用求导公式计算出来的导函数f'(x)往往含有间断点,在间断点x0处f'(x)无意义,但这不意味着f'(x0)一定不存在,例如f(x)=(x^2)sin(1/x) x≠0
=0 x=0
可以验证在可去间断点x=0处,导函数f'(x)无意义,但f'(0)=0存在
正确方法是用偏导数的定义来验证,偏导数是通过极限来定义的,按定义写出某点(x0,y0)处偏导数的极限表达式(以对x的偏导数为例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趋于x0),然后用极限的相关知识来考察这个极限是否存在,这极限是否存在和该点处偏导数是否存在是一致的,因此证明偏导数存在的任务就转化为证明极限存在,这可以通过以下两种途径1,根据极限运算法则求出该极限,只要能求出极限的具体值,就等于证明了极限存在,而不用再费事去证明了;2,如果极限不容易求出,可以考虑用极限存在的准则去证明(例如夹逼准则)极限存在(如果证明偏导数不存在则用极限的相关理论证明该极限不存在即可)
多说一点,在确定某点处偏导数存在的基础上,往往还要讨论偏导数在该点是否连续,这时才是用求导公式的时候,用求导公式计算出导函数f'x(x,y),这是一个关于x和y的二元函数,求(x0,y0)处二元函数f'x(x,y)的极限,如果这个极限存在且等于该点处的偏导数值,则偏导数连续,否则不连续
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)