初中三角函数相关知识

初中三角函数相关知识,第1张

11 正弦和余弦

例1 已知0°≤α≤90°(1)求证:sin2α+cos2α=1;

(2)求证:sinα+cosα≥1,讨论在什么情形下等号成立;

(3)已知sinα+cosα=1,求sin3α+cos3α的值

证明 (1)如图6-1,当0°<α<90°时,sinα=BC/AB,cosα=AC/AB,所以在这种情形下

当α=0°时,sinα=0,cosα=1;当α=90°,sinα=1,cosα=0所以在这两种情形下仍有

sin2α+cos2α=1

(2)如图6-1,当0°<α<90°时,sinα=BC/AB,cosα=AC/AB所以在这种情形下

当α=0°时,sinα+cosα=0+1=1;当α=90°时,sinα+cosα=1+0=1所以当0°≤α≤90°时,总有

sinα+cosα≥1,

当并且只当α=0°或α=90°时,等号成立

(3)由于已知sina+cosα=1由(2)可知α=0°或α=90°,所以总有

sin3α+cos3α=1

例2 求证:对于0°≤α≤90°,

证法一 如图6-1,设BC=a,AC=b,AB=c由锐角三角函数

当α=0°或α=90°时,容易验证以上等式仍成立

证法二

点评 证法一是根据锐角三角函数的定义;证法二用了公式sin2α+cos2α=1

证明一个三角恒等式成立,可变换等号左(右)端的式子,如得到等号右(左)端的式子,原恒等式就被证明了一般对较复杂的式子进行变换,也可以对等号左,右的式子都进行变换,如得到相同的式子,原恒等式就被证明了

12 正切和余切

证明 (1)当0°<α<90°时,如图6-2,

当α=0°时,tgα=0,sinα=0,cosα=1所以仍有tgα=

(2)α必须满足不等式:

0°<α<90°

如图6-2,

所以tgα·ctgα=1

例2 已知锐角α,且tgα是方程x2-2x-3=0的一个根,求

解法一 x2-2x-3=0的两根为3和-1这里只能是tgα=3

如图6-3,由于tgα=3因此可设BC=3,AC=1,从而

解法二 tgα=3,用cos2α除原式分子,分母,得

证法一 如图6-2,设BC=a,AC=b,AB=c,则

所以原式成立

证法二 等式的左端

点评 这里α≠0°,90°

怎样理解锐角三角函数的概念

答:现行初中几何课本中给出锐角三角函数的定义,是依据这样一个基本事实:在直角三角形中,当锐角固定时,它的对边,邻边与斜边的比值是一个固定的值

关于这点,我们看图1,图中的直角三角形AB1C1,AB2C2,AB3C3,…都有一个相等的锐角A,即锐角A取一个固定值如图所示,许许多多直角三角形中相等的那个锐角叠合在一起,并使一条直角边落在同一条直线上,那么斜边必然都落在另一条直线上不难看出,

B1C1‖B2C2‖B3C3‖…,

∵△AB1C1∽△AB2C2∽△AB3C3∽…,

因此,在这些直角三角形中,∠A的对边与斜边的比值是一个固定的值

根据同样道理,由"相似形"知识可以知道,在这些直角三角形中,∠A的对边与邻边的比值,∠A的邻边与斜边的比值都分别是某个固定的值

这样在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA;锐角A邻边与斜边的比叫做∠A的余弦,记作cosA;锐角A的对边与邻边的比叫做∠A的正切,记作tgA;锐角A的邻边与对边的比叫做∠A的余切,记作ctgA,于是我们得到锐角A的四个锐角三角函数,即

深刻理解锐角三角函数定义,要注意以下几点:

(1)角A的锐角三角函数值与三角形的大小,即边的长短无关

只要角A一旦确定,四个比值就随之而定;角A变化时四个比值对应变化这正体现了函数的特点,锐角三角函数也是一种函数,这里角A是自变量,对于每一个确定的角A,上面四个比值都有唯一确定的值与之对应,因此,锐角三角函数是以角为自变量,以比值为函数值的函数

(2)准确理解锐角三角函数定义,要熟记每个锐角三角函数是怎样规定的,是角的哪条边与哪条边的比;在具体应用定义时,要注意分清图形中,哪条边是角的对边,哪条边是角的邻边,哪条边是斜边

[例] 求出图2中sinD,tgE的值

(3)"sinA"等是一个完整的符号

整的符号,不能看成sin与A的乘积离开角A的"sin"没有什么意义,其他三个cosA,tgA,ctgA等也是这样所以写时不能把"sin"与"A"分开

锐角三角函数定义把形与数结合起来,从事物的相互联系去观察,对直角三角形不是孤立地看它的角,它的边,而是抓住了它们之间的联系,从而为深入研究问题打开了思路,奠定了基础从定义的导出过程不难看出,锐角三角函数是数(比值)和形(角A)完美结合的结果,同学们应该在学习中很好地体会和掌握这种研究问题的思想方法

计算

解答题

3 在Rt△ABC中,∠C=90°,若sinA是方程5x2 -14x+8=0的一个根,求sinA,tgA

4 q为三角形的一个角,如果方程10x2-(10cosq)x-3cosq+4=0有两个相等的实数根,求tgq

答案

3 解:∵sinA是方程5x2-14x+8=0的一个根

则5sin2A-14sinA+8=0

4 解:∵100cos2q-40(4-3cosq)=0

即5cos2q+6cosq-8=0

初中三角函数公式

三角函数公式

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

sin30°=1/2

sin45°=根号2/2

sin60°=根号3/2

cos30°=根号3/2

cos45°=根号2/2

cos60°=1/2

tan30°=根号3/3

tan45°=1

tan60°=根号3

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA)

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

[编辑本段]倍角公式

Sin2A=2SinACosA

Cos2A=Cos^A-Sin^A=1-2Sin^A=2Cos^A-1

tan2A=2tanA/1-tanA^2

[编辑本段]三倍角公式

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

[编辑本段]半角公式

[编辑本段]和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

[编辑本段]积化和差

sin(a)sin(b) = -1/2[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2[sin(a+b)-sin(a-b)]

[编辑本段]诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tanA=tanA = sinA/cosA

[编辑本段]万能公式

[编辑本段]其它公式

[编辑本段]其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

[编辑本段]双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

这个物理常用公式我费了半天的劲才输进来,希望对大家有用

A·sin(ωt+θ)+ B·sin(ωt+φ) =

√{(A^2 +B^2 +2ABcos(θ-φ)} sin{ ωt + arcsin[ (Asinθ+Bsinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容

函数名 正弦 余弦 正切 余切 正割 余割

在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有

正弦函数 sinθ=y/r

余弦函数 cosθ=x/r

正切函数 tanθ=y/x

余切函数 cotθ=x/y

正割函数 secθ=r/x

余割函数 cscθ=r/y

(斜边为r,对边为y,邻边为x。)

以及两个不常用,已趋于被淘汰的函数:

正矢函数 versinθ =1-cosθ

余矢函数 coversθ =1-sinθ

正弦(sin):角α的对边比上斜边

余弦(cos):角α的邻边比上斜边

正切(tan):角α的对边比上邻边

余切(cot):角α的邻边比上对边

正割(sec):角α的斜边比上邻边

余割(csc):角α的斜边比上对边

同角三角函数间的基本关系式:

·平方关系:

sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2

tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2

cot^2(α)+1=csc^2(α)

·积的关系:

sinα=tanαcosα

cosα=cotαsinα

tanα=sinαsecα

cotα=cosαcscα

secα=tanαcscα

cscα=secαcotα

·倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos^(α)-sin^(α)=2cos^(α)-1=1-2sin^(α)

tan(2α)=2tanα/[1-tan^2(α)]

·三倍角公式:

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

·其他:

sinα+sin(α+2π/n)+sin(α+2π2/n)+sin(α+2π3/n)+……+sin[α+2π(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π2/n)+cos(α+2π3/n)+……+cos[α+2π(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x++cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x++cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x++ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x++sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x++sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx++cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

三角函数的诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

完整初中三角函数值表如下图所示:

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

扩展资料:

起源

公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。

三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。

我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。

印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。

tan就是正切的意思。直角三角函数中,锐角对应的边跟另一条直角边的比。

cos就是余弦的意思。锐角相邻的那条直角边与斜边的比。

sin就是正弦的意思。锐角对应的边与斜边的边。

sin正弦=股长/弦长。

勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。把直角三角形的弦放在直径上,股就是∠A所对的弦,即正弦,勾就是余下的弦——余弦。

按现代说法,正弦是直角三角形的对边与斜边之比。

现代正弦公式是:sin=直角三角形的对边比斜边。

正弦概念:

在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。

古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。

-三角函数公式

e^(iα)=cosα+isinα; e^(-iα)=cosα-isinα;cosα=1/2[e^(iα)+e^(-iα)];sinα=-i/2[e^(iα)-e^(-iα)]。

三角函数与欧拉

三角学是以三角形的边角关系为基础,研究几何图形中的数量关系及其在测量方面的应用的数学分支。“三角学”一词的英文“trigonometry ”就是由两个希腊词“三角形”和“测量”合成的。现在,三角学主要研究三角函数的性质及其应用。

1463年,法国学者缪勒在《论三角》中系统总结了前人对三角的研究成果。17世纪中叶,三角由瑞士人邓玉函(Jean Terrenz 1576-1630)传入中国。在邓玉函的著作《大测》二卷中,主要论述了三角函数的性质及三角函数表的制作和用法。当时,三角函数是用左图中的八条线段的长来定义的,这已与我们刚学过的三角函数线十分类似。    

著名数学家、物理学家和天文学家欧拉(Léonard Euler)1707年出生于瑞士的巴塞尔,1720年进入巴塞尔大学学习,后获硕士学们。1727年起,他先后到俄国、德国工作,1766年再次到俄国直至逝世。

1748年,欧拉出版了一部划时代的著作《无穷小分析概论》,其中提出三角函数是对应的三角函数线与圆的半径的比值,并令圆的半径为1,这使得对三角函数的研究大为简化,他还在此书的第八章中提出了弧度制的思想。

他认为,如果把半径作为1个单位长度,那么半圆的长就是Π,所对圆心角的正弦是0,即sin Π=0,同理,圆的1/4的长是Π/2,所对圆心角的正弦是1,可记作sin Π/2=1。这一思想将线段与弧的度量单位统一起来,大大简化了某些三角公式及其计算。

18世纪中叶,欧拉给出了三角函数的现代理论,他还成功地把三角函数的概念由褛范围推广到复数范围。

值得指出,1735年,欧拉右眼失明,《无穷小分析概论》这部著作出自版于他这一不幸之后。他的著作,在样式、范围和记号方面堪称典范,因此被许多大学作为教科书采用。

1766年,他回到俄国不入,又转成双目失明,他以惊人的毅力,在圣彼得堡又用口述由别人记录的方式工作了近17年,直到1783年去世。1909年,瑞士自然科学学会开始出版欧拉全集,使他卷帙浩繁的著作得以流芳百世,至今已出版七十余卷。

欧拉公式的发现过程

早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。但在当时这个规律并未广泛流传。

过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。

欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?

欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。

事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。

欧拉是一位不折不扣的数学天才。但是他的非凡成就也和他对数学的热爱有关。在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。

锐角三角函数

  

锐角三角函数(3张)在直角三角形ABC中,a、b、c分别是∠A、∠B、∠C的对边,∠C为直角。则定义以下运算方式: sin ∠A=∠A的对边长/斜边长,sin A记为∠A的正弦;sinA=a/c cos∠ A=∠A的邻边长/斜边长,cos A记为∠A的余弦;cosA=b/c tan∠ A=∠A的对边长/∠A的邻边长, tanA=sinA/cosA=a/ b tan A记为∠A的正切; 当∠A为锐角时sin A、cos A、tan A统称为“锐角三角函数”。 sinA=cosB sinB=cosA

常见三角函数

  

在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)。 在这个直角三角形中,y是θ的对边,x是θ的邻边,r是斜边,则可定义以下六种运算方法: 基本函数 英文 表达式 语言描述

正弦函数 Sine sin θ=y/r 角θ的对边比斜边

余弦函数 Cosine cos θ=x/r 角θ的邻边比斜边

正切函数 Tangent tan θ=y/x 角θ的对边比邻边

余切函数 Cotangent cot θ=x/y 角θ的邻边比对边

正割函数 Secant sec θ=r/x 角θ的斜边比邻边

余割函数 Cosecant csc θ=r/y 角θ的斜边比对边

在初高中教学中,主要研究正弦、余弦、正切三种函数。  注:tan、cot曾被写作tg、ctg,现已不用这种写法。 sinπ/3

非常见三角函数

  除了上述六个常见的函数,还有一些不常见的三角函数,这些运算已趋于淘汰: 函数名 与常见函数转化关系

正矢函数 versinθ=1-cosθ

余矢函数 coversθ=1-sinθ

半正矢函数 haversθ=(1-cosθ)/2;

半余矢函数 hacoversθ=(1-sinθ)/2;

外正割函数 exsecθ=secθ-1

外余割函数 excscθ=cscθ-1

单位圆定义

  六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图像,把所有重要的三角函数都包含了。根据勾股定理, 三角函数

单位圆的方程是:x^2+y^2=1 图像中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于cosθ和sinθ。图像中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sinθ = y/1 和 cosθ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。 对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π的周期函数:对于任何角度 θ 和任何整数 k。 周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π 弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。上面只有正弦和余弦是直接使用单位圆定义的,其他四个三角函数的定义如图所示。  其他四个三角函数的定义

在正切函数的图像中,在角 kπ 附近变化缓慢,而在接近角 (k + 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k + 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k + 1/2)π 的时候函数接近正无穷,而从右侧接近 (k + 1/2)π 的时候函数接近负无穷。 另一方面,所有基本三角函数都可依据中心为 O 的单位圆来定义,类似于历史上使用的几何定义。特别 三角函数

是,对于这个圆的弦 AB,这里的 θ 是对向角的一半,sin θ 是 AC(半弦),这是印度的阿耶波多介入的定义。cosθ 是水平距离 OC,versin θ =1-cosθ 是CD。tanθ 是通过 A 的切线的线段 AE 的长度,所以这个函数才叫正切。cotθ 是另一个切线段 AF。 secθ =OE 和 cscθ =OF 是割线(与圆相交于两点)的线段,所以可以看作 OA 沿着 A 的切线分别向水平和垂直轴的投影。DE 是 exsecθ = secθ-1(正割在圆外的部分)。通过这些构造,容易看出正割和正切函数在 θ 接近 π/2的时候发散,而余割和余切在 θ 接近零的时候发散。

三角函数线

  依据单位圆定义, 我们可以做三个有向线段(向量)来表示正弦、余弦、正切的值。 如图所示,圆O是一个单位圆,P是α的终边与单位圆上的交点,M点是P在x轴的投影,S(1,0)是圆O与x轴正半轴的交点,过S点做圆O的切线l。 那么向量MP对应的就是α的正弦值,向量OM对应的就是余弦值。OP的延长线(或反向延长线)与l的交点为T,则向量ST对应的就是正切值。向量的起止点不能颠倒,因为其方向是有意义的。 借助线三角函数线,我们可以观察到第二象限角α的正弦值为正,余弦值为负,正切值为负。 1、锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边; 余弦(cos)等于邻边比斜边;

三角函数(8张)  正切(tan)等于对边比邻边; 余切(cot)等于邻边比对边; 正割(sec)等于斜边比邻边; 余割 (csc)等于斜边比对边。 2、互余角的三角函数间的关系 sin(90°-α)=cosα, cos(90°-α)=sinα, tan(90°-α)=cotα, cot(90°-α)=tanα 3、同角三角函数间的关系 商数关系: sinA/cosA=tanA ·平方关系: sin^2(A)+cos^2(A)=1 ·积的关系: sinA=tanA·cosA cosA=cotA·sinA cotA=cosA·cscA tanA·cotA=1 ·倒数关系: 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 余切等于邻边比对边 4、三角函数值 (1)特殊角三角函数值 (2)0°~90°的任意角的三角函数值,查三角函数表。 (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤∠A≤90°间变化时, 0≤sinα≤1, 1≥cosA≥0, 当角度在0°<∠A<90°间变化时, tanA>0, cotA>0 特殊的三角函数值 0° 30° 45° 60° 90° 0 1/2 √2/2 √3/2 1 ← sinA 1 √3/2 √2/2 1/2 0 ← cosA 0 √3/3 1 √3 None ← tanA None √3 1 √3/3 0 ← cotA “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

三角函数

本章教学目标

1(1)任意角的概念以及弧度制正确表示象限角、区间角、终边相同的角,熟练地进行角度制与弧度制的换算

(2)任意角的三角函数定义,三角函数的符号变化规律,三角函数线的意义

2(1)同角三角函数的基本关系和诱导公式

(2)已知三角函数值求角

3函数y=sinx、y=cosx、y=tanx以及y=Asin(ωx+φ)的图像和“五点法”作图、图像法变换,理解A、ω、φ的物理意义

4三角函数的定义域、值域、奇偶性、单调性、周期性

5两角和与差的三角函数、倍角公式,能正确地运用三角公式进行简单的三角函数式的化简、求值和恒等证明

本章包括任意角的三角函数、两角和与差的三角函数、三角函数的图像和性质三部分

三角函数是中学数学的重要内容,它是解决生产、科研实际问题的工具,又是进一步学习其他相关知识和高等数学的基础,它在物理学、天文学、测量学以及其他各种应用技术学科中有着广泛的应用

核心知识

一、本章主要内容是任意角的概念、弧度制、任意角的三角函数的概念,同角三角函数之间的基本关系,正弦、余弦的诱导公式,两角和与差及二倍角的正弦、余弦、正切,正弦、余弦、正切函数的图像和性质,以及已知三角函数值求角

二、根据生产实际和进一步学习数学的需要,我们引入了任意大小的正、负角的概念,采用弧度制来度量角,实际上是在角的集合与实的集合R这间建立了这样的一一对应关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(角的弧度数等于这个实数)与它对应采用弧度制时,弧长公式十分简单:l=|α|r(l为弧长,r为半径,α为圆弧所对圆心角的弧度数),这就使一些与弧长有关的公式(如扇形面积公式等)得到了简化

三、在角的概念推广后,我们定义了任意角的正弦、余弦、正切、余切、正割、余割的六种三角函数它们都是以角为自变量,以比值为函数值的函数由于角的集合与实数集之间可以建立一一对应关系,三角函数可以看成是以实数为自变量的函数

四、同角三角函数的基本关系式是进行三角变换的重要基础之一,它们在化简三角函数式和证明三角恒等式等问题中要经常用到,必须熟记,并能熟练运用

五、掌握了诱导公式以后,就可以把任意角的三角函数化为0°~90°间角的三角函数

六、以两角和的余弦公式为基础推导得出两角和与差的正弦、余弦、正切公式,以及二倍角的正弦、余弦、正切公式,掌握这些公式的内在联系及推导的线索,能够帮助我们理解和记忆这些公式,这也是学好本单元知识的关键

七、利用正弦线、余弦线可以比较精确地作出正弦函数、余弦函数的图像,可以看出,因长度在一个周期的闭区间上有五个点(即函数值最大和最小的点以及函数值为零的点)在确定正弦函数、余弦函数图像的形状时起着关键的作用

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/13492434.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-09-01
下一篇2025-09-01

发表评论

登录后才能评论

评论列表(0条)

    保存