怎么求正态分布概率

怎么求正态分布概率,第1张

正态概率分布是连续型随机变量概率分布中最重要的形式,它在实践中有着广泛的应用。在自然界和人类社会,有许多现象的分布都服从正态分布,如人的身高、体重、智商分数;某种产品的尺寸和质量;降雨量;学习成绩,特别是,在统计推断时,当样本的数量足够大时,许多统计数据都服从正态分布。因此,正态分布在抽样理论中占有重要地位。另外,正态分布还是其他连续型概率分布的极限分布,可用正态分布近似计算或导出其他连续型概率分布。如果随机变量具有概率密度函数则称是服从参数为的正态分布。式中=均值,σ=标准差,π如果随机变量服从正态分布,记为N是决定正态分布的两个参数。决定水平位置,σ决定离散程度。正态分布的概率密度函数具有下列性质;为对称轴的对称分布;轴为渐近线;若随机变量Xn皆服从正态分布,且相互独立,则对任意几个常数an不全为Z=anXn也服从正态分布。用正态分布曲线积分求得概率是非常困难的,这样的积分只能用数值方法求出。同时,提供包括所有不同的σ的正态分布表也是不可能的。所以统计学家通过一种简单的方法来解决这一问题。

标准正态分布密度函数:f(x)=(1/√2π)exp(-x^2/2)。而其中exp(-x^2/2)为e的-x^2/2次方,其定义域为(-∞,+∞),从概率密度表达式可以看出,f(x)是偶函数,即f(x)的图像关于y轴对称。

Φ(x)定义为服从标准正态分布的随机变量X的分布函数,其值为对f(x)关于x积分,从-∞积到x。从f(x)图像上看,Φ(x)的值相当于f(x)曲线一下,x轴曲线以上,区域为(-∞,x)这段的面积。由于f(x)为偶函数,且有分布函数性质Φ(+∞)=1,可以求出Φ(0)=05。

正态分布概率密度函数特性

集中性:正态曲线的高峰位于正中央,即均数所在的位置。 

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。 曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

标准正态分布密度函数公式:

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

图形特征:

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

扩展资料:

由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。

为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。 

若 服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。

(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)

面积分布

1、实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。

2、正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68268949%。

P{|X-μ|<σ}=2Φ(1)-1=06826

横轴区间(μ-196σ,μ+196σ)内的面积为95449974%。

P{|X-μ|<2σ}=2Φ(2)-1=09544

横轴区间(μ-258σ,μ+258σ)内的面积为99730020%。

P{|X-μ|<3σ}=2Φ(3)-1=09974

参考资料:

——正态分布

这是标准正态分布密度函数(如图):

如果是计算概率,那就要用分布函数,但是它的分布函数是不能写成正常的解析式的。一般的计算方法就是,将标准正态分布函数的分布函数在各点的值计算出来制成表,实际计算时通过查表找概率。非标准正态分布函数可以转换成标准正态分布再算。

正态曲线

呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/12461540.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-23
下一篇2023-05-23

发表评论

登录后才能评论

评论列表(0条)

    保存