如何求函数的导数?

如何求函数的导数?,第1张

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

函数的导数怎么求

首先,导数的产生是从求曲线的切线这一问题而产生的,因此利用导数可以求曲线在任意一点的切线的斜率。

其次,利用导数可以解决某些不定式极限(就是指0/0、无穷大/无穷大等等类型的式子),这种方法叫作“洛比达法则”。

然后,我们可以利用导数,把一个函数近似的转化成另一个多项式函数,即把函数转化成a0+a1(x-a)+a2(x-a)^2+……+an(x-a)^n,这种多项式叫作“泰勒多项式”,可以用于近似计算、误差估计,也可以用于求函数的极限。

另外,利用函数的导数、二阶导数,可以求得函数的形态,例如函数的单调性、凸性、极值、拐点等。

最后,利用导数可以解决某些物理问题,例如瞬时速度v(t)就是路程关于时间函数的导数,而加速度又是速度关于时间的导数。而且,在经济学中,导数也有着特殊的意义。

分式函数的求导公式如下:

1、用汉字表示为:(分子的导数分母-分子分母的导数)/分母的平方。

2、用字母表示为:(u/v)' = (u'v-uv')/v²。

求导:

当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

导数公式:

1、C'=0(C为常数)

2、(Xn)'=nX(n-1) (n∈R)

3、(sinX)'=cosX

4、(cosX)'=-sinX

5、(aX)'=aXIna (ln为自然对数)

欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/langs/12459813.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-23
下一篇2023-05-23

发表评论

登录后才能评论

评论列表(0条)

    保存