转录时RNA聚合酶能识别DNA中特定碱基序列是对的:
转录时,需要催化酶,就是RNA聚合酶,而发生反应的前提是该酶与DNA结合,结合部位在DNA编码区上游的启动子,所以,RNA聚合酶首先要识别找到启动子,结合后在转录。
原核生物RNA聚合酶能直接识别基因的启动子区,真核细胞则有所不同.真核细胞中,需要一些被称为转录调控因子的辅助蛋白质按特定顺序结合于启动子上,RNA聚合酶才能与之结合并形成复杂的转录起始复合物,以保证有效的起始转录.
RNA聚合酶主要是在转录时用到 其作用1有解开DNA双链的作用2就是催化合成RNA。
RNA聚合酶(RNA polymerase)是以一条DNA链或RNA为模板,三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶,因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。
RNA聚合酶催化RNA的合成,其与DNA聚合酶有许多相同的催化特点:
①以DNA为模板;
②催化核苷酸通过聚合反应合成核酸;
③聚合反应是核苷酸形成3’,5’一磷酸二酯键的反应;
④以3’→5’方向阅读模板,5’→3’方向合成核酸;
⑤按照碱基配对原则忠实转录模板序列。
扩展资料:
通常可根据生物的类别,将RNA聚合酶分为原核生物RNA聚合酶、真核生物RNA聚合酶。
原核生物和真核生物的RNA聚合酶有共同特点,但在结构、组成和性质等方面又不尽相同。
所有三个RNAPs都有由10个亚单位组成的催化核心。其中5个是核心亚单位,形成以DNA为中心的蟹爪形,RNA产物通道和NTP底物,另外还有5个单位。
爪状形状稳定了DNA并能够正确形成转录泡( DNA链在待转录基因附近展开的区域)。) RNAPⅱ总共只有12个亚基。除了在所有RNAP中发现的10个催化亚基之外,RNAP II还有两个启动转录的Rpb47。
RNAPⅱ是主要负责信使RNA ( mRNA )合成的酶。RNAPⅰ和ⅲ含有一个额外的异二聚体亚基。仅RNAP III就有一个异三聚体亚基,总共有17个亚基。
RNAP II在其羧基端有几个重复单元( Tyr - Ser - Pro - Thr - Ser - Pro - Ser ),这些重复单元在RNAP I或III中都找不到。这些重复使蛋白质与RNAP II分子结合并启动其活性。
在RNAP III中发现的附加亚基被认为与其它RNAP相比,赋予酶增加的灵活性。而RNAP I (位于细胞核中)则单独负责大核糖体RNA ( rRNA )亚单位的合成。
高度丰富的RNAP III以其稳定性而闻名,合成了大量的tRNA、5S rRNA和其他蛋白质合成产物。两种聚合酶都在细胞内发挥结构和催化作用。
不管物种如何,RNAP在转录中起作用。通过与DNA链上的启动子位点结合,RNAP与转录因子一起形成转录前起始复合物( PIC )。这就启动了转录过程。
启动子位点是位于DNA链5’末端上游的区域。富含AT的TATA盒是公认的启动子序列,由RNAP II使用。然而,这种启动子仅在大约10 - 15 %的哺乳动物物种中发现。
转录因子如TFIID与TATA盒结合,导致DNA支架形状发生巨大变化。这允许其他蛋白质在启动子位点与RNAP II组装,形成转录起始复合物( TIC )。
磷酸基团通过TFIIH加到RNAP II的末端,释放酶,从而开始转录过程。启动子位点的转录因子随后被释放和再循环,使它们能够开始新一轮转录。一旦转录过程完成,磷酸酶就从RNAP II中除去磷酸基团。
参考资料:百度百科——RNA聚合酶
pcr技术与rna+特定的碱基序列有互补配对现象。PCR(Polymerase Chain Reaction)即聚合酶链式反应,是一种分子生物学技术,用于复制放大特定的DNA片段,可看作生物体外特殊的DNA复制.其原理是DNA的半保留复制:双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子挎贝.在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链.因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制.
欢迎分享,转载请注明来源:优选云