树枝状聚合物具有低粘度、高溶解性、可混合性以及高反应性等特点。同时其体积和形态还可在合成过程中加以专一性的控制。比如,设计出具有巨大内部疏水空间(hydrophobic void spaces),而表面却是亲水性质的树枝状聚合物。
线性聚合物中线性部分占大多数,支化点很少,分子链容易缠结,体系的粘度随着相对分子质量的增大而迅速增加。
超支化聚合物:ABx(X≥2) 型的单体的缩聚反应生成可溶性的高度支化的聚合物。这种聚合物不是完美的树枝状大分子,而是结构有缺陷的聚合物,这种聚合物称为超支化聚合物。是一种具有特殊大分子结构的聚合物。
超支化聚合物中主要是支化部分,支化点较多,支化部分至少呈的几率增长。分子具有类似球形的紧凑结构,流体力学回转半径小,分子链缠结少,所以相对分子质量的增加对粘度影响较小,而且分子中带有许多官能性端基,对其进行修饰可以改善其在各类溶剂中的溶解性,或得到功能材料。
材料化学专业主要培养系统掌握材料化学的基本理论与技术,具备材料化学相关的基本知识和基本技能,能运用化学和材料科学的基础理论、基本知识和实验技能在材料科学与化学及其相关的领域从事研究、教学、科技开发及相关管理工作的具有开拓型、前瞻性、复合型的高级人才。材料化学(Material Chemistry)专业一般是作为材料科学与工程系/学院中的一个专业方向。
主要的研究范畴并不是材料的化学性质(尽管从字面上可以这么理解),而是材料在制备、使用过程中涉及到的化学过程、材料性质的测量。
比如陶瓷材料在烧结过程中的变化(也就是怎么才能烧出想要的陶瓷)、金属材料在使用过程中的腐蚀现象(怎样防止生锈)、冶金过程中条件的控制对产品的影响(怎么才能炼出优质钢材)等等。
材料性质的测量也不同于材料物理专业的方法。材料化学专业所研究的大多跟传统产业有关,属于解决实际问题的理论学科,因此材料化学专业研究的课题没有那么新潮和热门,但是在现实生产中,对优秀的材料化学方面人才的需求是巨大的,例如说冶金行业,在钢铁、有色金属冶炼过程中效率低、产品质量差、生产过程中浪费严重等问题,都需要用材料化学的知识来解决。
中国虽然一直以陶瓷闻名世界,但实际世界上精密陶瓷(用于电子材料中,价钱非常昂贵)绝大部分是由日本制造的,就是因为我们在配料、控制烧结条件等环节技术力量太差,而材料化学正是解决这些问题的。所以材料化学专业不仅实用价值高,而且发展空间大。
材料化学专业的基础课程主要涉及物理学、热力学、材料化学、冶金学、电化学等方面知识,特别是无机化学、物理化学。当然,由于专业方向的不同,有些专业也需要很多有机化学、生物化学的知识,像反应中的薄膜技术、胶体技术(在生产中以薄膜和胶体作为反应介质)的应用等等。
一般分别为发散合成法、收敛合成法、发散收敛结合法。 发散合成是从所需的树状大分子的中心点开始向外扩展来进行合成反应的。从中心核开始,该中心核拥有一个或多个反应点,然后用带有分支结构的单元与中心核反应,即得到了第一代分子。将第一代分子分支末端的官能团转化为可继续进行反应的官能团,然后重复与分支单元反应物进行反应则得到第二代分子。不断重复以上的两个步骤,就可以得到期望的树状大分子。
优点是化合物增长过程中反应点逐渐增多,可以合成较高的代数 缺点是末端官能团反应不完全将会导致下一级产物产生缺陷,而且随着分子的增大这种现象出现的机会也就越大。
? 收敛法是由树枝形聚合物的外围逐步向内合成的方法。反应是由将要生成树枝形聚合物最外层结构的部分开始,然后与分支单元反应物反应得到第一代分子;之后将基团活化后再与分支单元反应物继续反应得到第二代分子。如此不断地重复将基团活化,并与分支单元反应物进行连接,就可合成出更高代数的树枝形聚合物。
与发散合成相比,其优点为:收敛合成涉及的每步增长过程中反应官能团数目要少一些,使每一步反应总是限制在有限的几个活性中心进行,避免了采用大为过量的试剂,并降低了由于反应不完全产生“疵点”的几率,产物的结构也更加精致,同时纯化和表征也容易。
缺点为:对立体位阻比较敏感,随着树状大分子的增长,反应官能团活性减小,反应产率也会下降,且合成的高分子没有发散法合成的大。
? 发散收敛结合法是先用发散法制备出低代数的树状分子,作为活性中心,再用收敛法制得一定代数的扇形分子,称为“支化单体”,然后再将“支化单体”接到活性中心上就可合成出树状大分子。 发散收敛结合法综合了发散法和收敛法的优点,既能使合成产率提高,分子量增长加快,又能使分离纯化变得简单,减少分子结构缺陷。
1.Dendrimers are repeatedly branched molecules. The huge number of papers on dendritic architectures such as dendrimers, dendronized, hyperbranched and brush-polymers has generated a vast variety of inconsistent terms and definitions making a clear and concise unfolding of this topic highly difficult. The purpose of this section is to provide the vocabulary required for the description of chemical and physical phenomena as well as application aspects associated with the research in the area of dendritic molecules.
Dendritic molecules are repeatedly branched species that are characterized by their structure perfection. The latter is based on the evaluation of both symmetry and polydispersity. The area of dendritic molecules can roughly be divided into the low-molecular weight and the high-molecular weight species. The first category includes dendrimers and dendrons whereas the second encompasses dendronized polymers, hyperbranched polymers, and brush-polymers (also called bottle-brushes).
The name comes from the Greek δενδρον/dendron, meaning tree. Synonymous terms are arborols and cascade-molecules. Dendrimer is an internationally accepted term. Dendrimers and dendrons are repeatedly branched, monodisperse, and usually highly symmetric compounds. There is no apparent difference in defining dendrimer and dendron. A dendron usually contains a single chemically addressable group that is called the focal point. Because of the lack of the molar mass distribution high-molar-mass dendrimers and dendrons are macromolecules but not polymers.
The first dendrimers were synthesized divergently by V&oumlgtle in 1978[1], by Denkewalter and coworkers at Allied Corporation as polylysine dendrimers in 1981[2], by Tomalia at Dow Chemical in 1983[3] and in 1985[4], and by Newkome in 1985[5]. In 1990 a convergent synthesis was introduced by Mingjun Liu[6]. Dendrimers then experienced an explosion of scientific interest because of their unique molecular architecture (Fig 1). This resulted in over 5,000 scientific papers and patents published by the end of 2005.
2.“dendrimer”这个词来自希腊的“dendros”,意思是树和枝,树上的分枝长到一定长度后又分成两个分枝,如此重复进行,直到长得如此稠密以致于长成象球形一样的树丛。在dendrimer中,分枝是内部连结的高分子聚合键,每一个键又会产生新键,全部会向一个焦点聚合或向一个核聚合。
在dendrimer上形成大量键端球形突起物,象毛线球上的绒毛。在合成过程中,能设计这些键端去执行特殊的化学功能,例如,键端可带电,其目的是完全发挥dendrimer的高分子电解质的功能。另一个特点,在合成过程中,也能控制dendrimer外部尺寸和内部的构。这使得有可能创造与外部不同性质的内腔和通道,并打开dendrimer作为载体或作为受邀分子晶核的大门。在这一能力中,dendrimer除了为纳米技术建造纳米块外,还起催化作用。
欢迎分享,转载请注明来源:优选云