X光,核磁共振,超声,CT的异同点

X光,核磁共振,超声,CT的异同点,第1张

1895年,德国菲试堡物理研究所所长兼物理学教授威廉·孔拉德·伦琴把新发现的电磁波命名为X光,这个“X”是无法了解的意思。世人为了表示对发明者的敬意,亦称之为“琴伦线”。X光是一种有能量的电磁波或辐射。当高速移动的电子撞击任何形态的物质时,X光便有可能发生。X光具有穿透性,对不同密度的物质有不同的穿透能力。在医学上X光用来投射人体器官及骨骼形成影象,用来辅助诊断。1894年,实验物理学家勒纳德在放电管的玻璃壁上开了一个薄铝窗,成功地使阴极射线射出管外。1895年,物理学家伦琴在探索阴极射线本性的研究中,意外发现了X光。X光的发现,不仅揭开了物理学革命的序幕,也给医疗保健事业带来了新的希望。伦琴因此成为第一个诺贝尔物理学奖得主。x光是穿透性很强的射线,一种高能量光波粒子,所以一般物体都挡不住,射线要被阻挡,关键由射线强度、频率、阻挡物质与射线作用程度、阻挡物质厚度、阻挡物质大小共同决定。一般情况下,常见的X光(医院用)大约3~5cm的铅块就可以阻挡了。但是也会在背景屏上会显示阻挡物的阴影形状,就好像日食,虽挡住了太阳光,却留下了阴影。核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MR)。MR是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。MR提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MR对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。MR也存在不足之处。它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MR的检查,另外价格比较昂贵。超声是超过正常人耳所能听到的声波,频率在20000赫兹以上。运用超声波的物理特性和人体器官组织声学性质上的差异,以波形、曲线或图像的形式显示和记录出来,以进行疾病诊断的方法,就是超声检查。最早使用的是A型超声,它为振幅调制型,是一种超声示波诊断,按不同的反射波判断疾病,诊断能力有限。后来出现了B型超声,为辉度调制型,是超声显像诊断类型,能直接显示二维空间图像,故又称二维超声,能直接观察到器官的影像,诊断能力大大提高。之后,又出现了D型超声,也称多普勒型,是超声频移诊断法,利用多普勒效应,显示血液流动和脏器活动的信号。此外,还相继出现了M型、C型和T型超声。近年,又生产出彩色B超,比B超分辨能力更强。超声技术主要用于体内液性、实质性病变的诊断,对于胃、肺和胃肠道的病变则难以进行分辨。超声检查对发现病变、确定病变的位置和大小比较容易,确定病变是否为液性或含气性也较可靠,也尚能分辨肿瘤的良性与恶性。超声对检查心脏、腹部和盆腔器官包括妊娠的检查应用较多,如对肝血管瘤、肝脓肿、肝硬化,胆囊结石及肿瘤,脾和胰腺的疾病以及腹水诊断较为可靠;对肾脏、膀胱、前列腺、肾上腺、子宫、卵巢等疾病的诊断比对甲状腺、乳腺疾病的检查诊断准确;对妊娠的诊断,包括胎位、胎盘定位、多胎、死胎、胎儿畸形及葡萄胎判定等,都有相当高的价值。由于超声诊断仪不似CT昂贵,收费标准较低,因此,在临床应用较普遍,检查前的准备也很简单,如做肝、胆、胰、脾检查只需在检查当天禁食和禁水;检查妇科、前列腺则只需憋足小便即可。 什么是CT 全称:computed tomography CT是一种功能齐全的病情探测仪器,它是电子计算机X射线断层扫描技术简称。 CT的工作程序是这样的:它根据人体不同组织对X线的吸收与透过率的不同,应用灵敏度极高的仪器对人体进行测量,然后将测量所获取的数据输入电子计算机,电子计算机对数据进行处理后,就可摄下人体被检查部位的断面或立体的图像,发现体内任何部位的细小病变。 CT的发明 自从X射线发现后,医学上就开始用它来探测人体疾病。但是,由于人体内有些器官对X线的吸收差别极小,因此X射线对那些前后重叠的组织的病变就难以发现。于是,美国与英国的科学家开始了寻找一种新的东西来弥补用X线技术检查人体病变的不足。1963年,美国物理学家科马克发现人体不同的组织对X线的透过率有所不同,在研究中还得出了一些有关的计算公式,这些公式为后来CT的应用奠定了理论基础。1967年,英国电子工种师亨斯费尔德在并不知道科马克研究成果的情况下,也开始了研制一种新技术的工作。他首先研究了模式的识别,然后制作了一台能加强X射线放射源的简单的扫描装置,即后来的CT,用于对人的头部进行实验性扫描测量。后来,他又用这种装置去测量全身,获得了同样的效果。1971年9月,亨斯费尔德又与一位神经放射学家合作,在伦敦郊外一家医院安装了他设计制造的这种装置,开始了头部检查。10月4日,医院用它检查了第一个病人。患者在完全清醒的情况下朝天仰卧,X线管装在患者的上方,绕检查部位转动,同时在患者下方装一计数器,使人体各部位对X线吸收的多少反映在计数器上,再经过电子计算机的处理,使人体各部位的图像从荧屏上显示出来。这次试验非常成功。1972年4月,亨斯费尔德在英国放射学年会上首次公布了这一结果,正式宣告了CT的诞生。这一消息引起科技界的极大震动,CT的研制成功被誉为自伦琴发现X射线以后,放射诊断学上最重要的成就。因此,亨斯费尔德和科马克共同获取1979年诺贝尔生理学或医学奖。而今,CT已广泛运用于医疗诊断上。 CT的成像基本原理 CT是用X线束对人体某部一定厚度的层面进行扫描,由探测器接收透过该层面的X线,转变为可见光后,由光电转换变为电信号,再经模拟/数字转换器(analog/digital converter)转为数字,输入计算机处理。图像形成的处理有如对选定层面分成若干个体积相同的长方体,称之为体素(voxel),见图1-2-1。扫描所得信息经计算而获得每个体素的X线衰减系数或吸收系数,再排列成矩阵,即数字矩阵(digital matrix),数字矩阵可存贮于磁盘或光盘中。经数字/模拟转换器(digital/analog converter)把数字矩阵中的每个数字转为由黑到白不等灰度的小方块,即象素(pixel),并按矩阵排列,即构成CT图像。所以,CT图像是重建图像。每个体素的X线吸收系数可以通过不同的数学方法算出。 CT设备 CT设备主要有以下三部分:①扫描部分由X线管、探测器和扫描架组成;②计算机系统,将扫描收集到的信息数据进行贮存运算;③图像显示和存储系统,将经计算机处理、重建的图像显示在电视屏上或用多幅照相机或激光照相机将图像摄下。探测器从原始的1个发展到现在的多达4800个。扫描方式也从平移/旋转、旋转/旋转、旋转/固定,发展到新近开发的螺旋CT扫描(spiral CT scan)。计算机容量大、运算快,可达到立即重建图像。由于扫描时间短,可避免运动产生的伪影,例如,呼吸运动的干扰,可提高图像质量;层面是连续的,所以不致于漏掉病变,而且可行三维重建,注射造影剂作血管造影可得CT血管造影(Ct angiography,CTA)。超高速CT扫描所用扫描方式与前者完全不同。扫描时间可短到40ms以下,每秒可获得多帧图像。由于扫描时间很短,可摄得电影图像,能避免运动所造成的伪影,因此,适用于心血管造影检查以及小儿和急性创伤等不能很好的合作的患者检查。 CT图像特点 CT图像是由一定数目由黑到白不同灰度的象素按矩阵排列所构成。这些象素反映的是相应体素的X线吸收系数。不同CT装置所得图像的象素大小及数目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;数目可以是256×256,即65536个,或512×512,即262144个不等。显然,象素越小,数目越多,构成图像越细致,即空间分辨力(spatial resolution)高。CT图像的空间分辨力不如X线图像高。 CT图像是以不同的灰度来表示,反映器官和组织对X线的吸收程度。因此,与X线图像所示的黑白影像一样,黑影表示低吸收区,即低密度区,如含气体多的肺部;白影表示高吸收区,即高密度区,如骨骼。但是CT与X线图像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人体软组织的密度差别虽小,吸收系数虽多接近于水,也能形成对比而成像。这是CT的突出优点。所以,CT可以更好地显示由软组织构成的器官,如脑、脊髓、纵隔、肺、肝、胆、胰以及盆部器官等,并在良好的解剖图像背景上显示出病变的影像。 x线图像可反映正常与病变组织的密度,如高密度和低密度,但没有量的概念。CT图像不仅以不同灰度显示其密度的高低,还可用组织对X线的吸收系数说明其密度高低的程度,具有一个量的概念。实际工作中,不用吸收系数,而换算成CT值,用CT值说明密度。单位为Hu(Hounsfield unit)。 水的吸收系数为10,CT值定为0Hu,人体中密度最高的骨皮质吸收系数最高,CT值定为+1000Hu,而空气密度最低,定为-1000Hu。人体中密度不同和各种组织的CT值则居于-1000Hu到+1000Hu的2000个分度之间。 CT图像是层面图像,常用的是横断面。为了显示整个器官,需要多个连续的层面图像。通过CT设备上图像的重建程序的使用,还可重建冠状面和矢状面的层面图像,可以多角度查看器官和病变的关系。 CT检查技术 分平扫(plain CT scan)、造影增强扫描(contrast enhancement,CE)和造影扫描。 (一)平扫 是指不用造影增强或造影的普通扫描。一般都是先作平扫。 (二)造影增强扫描 是经静脉注入水溶性有机碘剂,如60%~76%泛影葡胺60ml后再行扫描的方法。血内碘浓度增高后,器官与病变内碘的浓度可产生差别,形成密度差,可能使病变显影更为清楚。方法分团注法、静滴法和静注与静滴法几种。 (三)造影扫描 是先作器官或结构的造影,然后再行扫描的方法。例如向脑池内注入碘曲仑8~10ml或注入空气4~6ml行脑池造影再行扫描,称之为脑池造影CT扫描,可清楚显示脑池及其中的小肿瘤。 CT诊断的临床应用 CT诊断由于它的特殊诊断价值,已广泛应用于临床。但CT设备比较昂贵,检查费用偏高,某些部位的检查,诊断价值,尤其是定性诊断,还有一定限度,所以不宜将CT检查视为常规诊断手段,应在了解其优势的基础上,合理的选择应用。 CT诊断的特点及优势 CT检查对中枢神经系统疾病的诊断价值较高,应用普遍。对颅内肿瘤、脓肿与肉芽肿、寄生虫病、外伤性血肿与脑损伤、脑梗塞与脑出血以及椎管内肿瘤与椎间盘脱出等病诊断效果好,诊断较为可*。因此,脑的X线造影除脑血管造影仍用以诊断颅内动脉瘤、血管发育异常和脑血管闭塞以及了解脑瘤的供血动脉以外,其他如气脑、脑室造影等均已少用。螺旋CT扫描,可以获得比较精细和清晰的血管重建图像,即CTA,而且可以做到三维实时显示,有希望取代常规的脑血管造影。 CT对头颈部疾病的诊断也很有价值。例如,对眶内占位病变、鼻窦早期癌、中耳小胆指瘤、听骨破坏与脱位、内耳骨迷路的轻微破坏、耳先天发育异常以及鼻咽癌的早期发现等。但明显病变,X线平片已可确诊者则无需CT检查。 对胸部疾病的诊断,CT检查随着高分辨力CT的应用,日益显示出它的优越性。通常采用造影增强扫描以明确纵隔和肺门有无肿块或淋巴结增大、支气管有无狭窄或阻塞,对原发和转移性纵隔肿瘤、淋巴结结核、中心型肺癌等的诊断,均很在帮助。肺内间质、实质性病变也可以得到较好的显示。CT对平片检查较难显示的部分,例如同心、大血管重叠病变的显圾,更具有优越性。对胸膜、膈、胸壁病变,也可清楚显示。 心及大血管的CT检查,尤其是后者,具有重要意义。心脏方面主要是心包病变的诊断。心腔及心壁的显示。由于扫描时间一般长于心动周期,影响图像的清晰度,诊断价值有限。但冠状动脉和心瓣膜的钙化、大血管壁的钙化及动脉瘤改变等,CT检查可以很好显示。 腹部及盆部疾病的CT检查,应用日益广泛,主要用于肝、胆、胰、脾,腹膜腔及腹膜后间隙以及泌尿和生殖系统的疾病诊断。尤其是占位性病变、炎症性和外伤性病变等。胃肠病变向腔外侵犯以及邻近和远处转移等,CT检查也有很大价值。当然,胃肠管腔内病变情况主要仍依赖于钡剂造影和内镜检查及病理活检。 骨关节疾病,多数情况可通过简便、经济的常规X线检查确诊,因此使用CT检查相对较少。 CT检查范围 CT可以做哪些检查吗? 一、头部:脑出血,脑梗塞,动脉瘤,血管畸形,各种肿瘤,外伤,出血,骨折,先天畸形等; 二、 胸部:肺、胸膜及纵隔各种肿瘤,肺结核,肺炎,支气管扩张,肺脓肿,囊肿,肺不张,气胸,骨折等; 三、 腹、盆腔:各种实质器官的肿瘤、外伤、出血,肝硬化,胆结石,泌尿系结石、积水,膀胱、前列腺病变,某些炎症、畸形等; 四、 脊柱、四肢:骨折,外伤,骨质增生,椎间盘病变,椎管狭窄,肿瘤,结核等; 五、 骨骼、血管三维重建成像;各部位的MPR、MIP成像等; 六、 CTA(CT血管成像):大动脉炎,动脉硬化闭塞症,主动脉瘤及夹层等; 七、 甲状腺疾病:甲状腺腺瘤、甲状腺腺癌等; 其他:眼科及眼眶肿瘤,外伤;副鼻窦炎、鼻息肉、肿瘤、囊肿、外伤等。 由于CT的高分辨力,可使器官和结构清楚显影,能清楚显示出病变。在临床上,神经系统与头颈部CT诊断应用早,对脑瘤、脑外伤、脑血管意外、脑的炎症与寄生虫病、脑先天畸形和脑实质性病变等诊断价值大。在五官科诊断中,对于框内肿瘤、鼻窦、咽喉部肿瘤,特别是内耳发育异常有诊断价值。 在呼吸系统诊断中,对肺癌的诊断、纵隔肿瘤的检查和瘤体内部结构以及肺门及纵隔有无淋巴结的转移,做CT检查做出的诊断都是比较可靠的。 在心脏大血管和骨骼肌肉系统的检查中也是有诊断价值的。 CT的几个重要概念: 1,分辨率:是图象对客观的分辨能力,他包括空间分辨率,密度分辨率,时间分辨率。 2,CT值:在CT的实际应用中,我们蒋各种组织包括空气的吸收衰减值都与水比较,并将密度固定为上限+1000。将空气定为下限-1000,其它数值均表示为中间灰度,从而产生了一个相对的吸收系数标尺。 3,窗宽和窗位 4,部分容积效应 5,噪声 因此,在日常生活中的人群里,如感觉到身体不适,还是应该及早到医院做检查,以明确诊断。做到早检查,早发现,早诊断,早治疗。

1.B型超声仪的工作原理

B型超声仪的工作原理与A型仪基本相同。它是由主控电路、发射电路、接收电路(高频信号放大器、视频信号放大器)、扫描发生器、图像显示器(电子枪、偏转系统、荧光屏)和换能器构成的。

主控电路又称同步触发信号发生器,它周期地产生同步触发脉冲信号,分别触发发射电路和扫描发生器中的时基扫描电路。超声脉冲发射的重复频率是由它控制的,通常同步触发信号的重复频率就是超声脉冲发射的重复频率。

发射电路在受同步信号触发时,产生高频电脉冲激励换能器。

接收电路接收由人体受检组织反射的超声信息,有以下几个主要过程:①对高频超声信号放大和对数压缩;②对高频超声信号检波,转变为视频信号;③对视频信号进行放大;④把放大了的视频信号显示在显示器上。

换能器将回波信号转换成高频电信号后,被检波器检出的视频包络信号要经过视频信号放大器放大和处理,然后加到显示器的栅极进行亮度调制。

扫描发生器产生扫描电压,使电子束按一定的规律扫描,在显示器上显示出切面图像。

超声回波信号的显示是通过显示器件来实现的,常见的显示器是阴极射线管(CRT)。阴极射线管有静电式(示波管)和磁偏转式(显像管)两种,两者的基本结构相同,主要区别是前者采用电场偏转,而后者采用磁偏转系统。

电子板的作用是发射高速且很细的电子束。偏转系统的作用是控制电子束,使其随外加电压的变化而偏转。

A型和B型超声仪工作原理的主要不同点是:①B型将A型的幅度调制显示改为辉度调制显示,它将放大后的回声脉冲电信号送到显示器的阴极(或控制栅上),使显示的亮度随信号大小变化;②B型的时基深度扫描一般加在显示器的垂直方向,声束必须扫描,和显示器水平方向上的位移扫描相应,以构成一幅切面显示图。因此,B型仪器也称为切面显像仪或二维显像仪。

2.B型超声的特别与限度

B型(brightnessmodulationmode)超声,为辉度调制型,其原理与A型相同,其不同点有三:①它将回声脉冲电信号放大后送到显示器的阴极,使显示的亮度随信号的大小而变化;②B型超声发射的声束必经扫描,加在显示器垂直方向的时基扫描与声束同步,以构成一幅二维切面声像图;③医生根据声像图所得之人体信息诊断疾病,而不是像A型超声那样根据波型所反映的人体信息诊病。

B型超声具有如下特点:它将从人体反射回来的回波信号以光点形式组成切面图像。此种图像与人体的解剖结构极其相似,故能直观地显示脏器的大小、形态、内部结构,并可将实质性、液性或含气性组织区分开来。

超声的传播速度快,成像速度快,每次扫描即产生一幅图像,快速地重复扫描。产生众多的图像组合起来便构成了实时动态图像。因而能够实时地观察心脏的运动功能、胎心搏动,以及胃肠蠕动等。

由于人体内组织的密谋不同,相邻两种组织的声阻抗也不同,当声阻抗差达千分之一时,两组织界面便会产生回声反射,从而将两组织区分开来。超声对软组织的这种分辨力是X射线的100倍以上。

此外,B型超声尚具操作简便,价格便宜、无损伤无痛苦,适用范围广等特点,因而已被广大患者和临床医师所接受。

B型超声也还存在下述问题:①显示的是二维切面图像,对脏器和病灶的空间构形和空间位置不能清晰显示;②由于切面范围和探查深度有限,尤其扇扫时声穿较小,对病变所在脏器或组织的毗邻结构显示不清;③对过度肥胖病人,含气空腔(胃、肠)和含气组织(肺)以及骨骼等显示极差,影响显像效果和检查范围。

你好,根据你描述的情形分析,你的可能是肾结石脱落到输尿管,并嵌顿在输尿管,这样会有严重的腹痛发作,出现肾积水的,这种情况需要积极处理,一般用止疼,解痉药物,结石排到膀胱内就可以了。

你CT发现的8mm的肾囊肿是不需要处理的,可以每半年复查超声,观察是否增大,如果增大比较严重时再处理就可以。


欢迎分享,转载请注明来源:优选云

原文地址:https://54852.com/hy/531799.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-12
下一篇2023-04-12

随机推荐

  • 繁花养肤,让肌肤更美

    阳光越来越灿烂,夏天越来越近。记得有一句话是愿如夏花之灿烂,花朵绚烂,不只能看,还能护肤。这次想分享主打花朵精萃的护肤产品。分享的产品有: 1欧舒丹蜡菊活颜精华保湿水; 2美素 瑰蜜凝颜娇嫩滋养蜜露; 3双妹雪白晶

    2023-12-14
    21300
  • 化妆品功效以及分析

    化妆品功效评价方法具有多样性和复杂性,常见的评价方法为体外试验和人体试验两类,体外试验包括理化分析法、生物化学方法、细胞生物学方法、分子生物学方法等。 化妆品保湿功效的体外评价方法包括理化分析法、细胞生物法(包括三维重组皮

    2023-12-14
    18800
  • 世界上最顶尖的化妆品有哪些牌子

    无论是男女老少,现在化妆品已经成为了大家日常生活中不可缺水的一部分了,那么在众多品牌之中,世界顶尖的化妆品牌还是很多的,我推荐下面5个最顶尖的世界级的化妆品。香奈儿是全球著名的奢侈品牌,是由加布里埃·香奈儿于1910年在法国创建,最早是以生

    2023-12-14
    18700
  • 科丝美诗代工哪些品牌

    科丝美诗是专业的化妆品代工厂,有很多大品牌都是科丝美诗加工生产的,那么科丝美诗代工哪些品牌呢接下来就让她时代的小编给大家详细解答一下。感兴趣的伙伴快来了解一下情况吧。科丝美诗代工哪些品牌科丝美诗旗下产品有兰蔻、植村秀、韩束、卡姿兰、百雀羚、

    2023-12-14
    18300
  • 兰蔻化妆品怎么样

    兰蔻的护肤品效果怎么样? 22岁,你应该用水分缘系列,因为不管什么年龄,保溼都是最重要的,如果你平时化彩妆,你会发现,皮肤水嫩,会比较好上妆,反之,如果皮肤干,粗糙的话用在好的彩妆都不会有很好的效果水分缘的话,叮的主要成分有玫瑰(保溼)

    2023-12-13
    19600
  • 什么牌子的化妆品好没有激素酒精的。

    不含激素,酒精的护肤品,符合此类标准的只有敏感肌肤专用护肤品,敏感肌专用护肤品一般都是无酒精,无添加,无刺激,配方是所有护肤品中相对来说最安全的一个,ph值都是弱酸性的,对皮肤比较好,而且过敏率相当低,敏感肌专用的牌子主要有理肤泉,雅漾,薇

    2023-12-13
    21000
  • 北美医用护肤品四大品牌

    PETER THOMAS ROTH 彼得罗夫彼得罗夫于1993年在美国成立,它属于高端化妆品品牌。它的创始人利用家族传统的经验与技术加入现代的科技成分研 究出了高效且有针对性的护肤品,在短时间内彼得罗夫这个品牌就成为了美国医学护肤领域的殿堂

    2023-12-13
    28100
  • 化妆品贴牌需要多少量

    成品OEM订单起订量的要求一般是按照瓶、个、支、片的单位来进行计算,比如面膜OEM起订量一般在20000-30000片左右,不同的化妆品厂家在化妆品OEM起订量上会有一定的出入。受化妆品OEM代加工产业链的影响,化妆品厂家要生产每一个订单的

    2023-12-13
    18700
  • 评价一款护肤品的好坏,除了成分和功效外还有哪些标准

    在护肤的问题上,姑娘们永远都那么心急。某款护肤品如果断货,她们千方百计也要弄到手,一到手,又恨不得抹到脸上去之后,十秒钟肌肤就焕然一新。护肤品不能不光看成分,还需要看它的酸性、整体的PH值,它的溶解、每个成分的含量配比、还有它的防腐是什么、

    2023-12-13
    19200

发表评论

登录后才能评论
保存