列举一种,仅供参考。
测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝 (Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下:
1. 人为因素
由于人为因素所造成的误差,包括误读、误算和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。误算常在计算错误或输入错误数据时所发生。视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生 的误差量。为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V形且本尺为凸V形,因此形成两刻划等高。
2. 量具因素
由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素。刻度分划是否准确,必须经由较精密的仪器来校正与追溯。量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用。
3. 力量因素
由于测量时所使用接触力或接触所造成挠曲的误差。依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成。其次,依据赫兹 (Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量
应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度 的断面二次矩为 ,长 的支柱为 ,纵弹性系数分别为 、 ,因此测量力为P时,挠曲量 为 。为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度。除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲。通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点 (Airey Points) 。线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点 (Bessel Points)
4. 测量因素
测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等。余弦误差是发生在测量轴与待测表面成一定倾斜角度 ,如图2-4-5所示其误差量为 , 为实际测量长度。通常,余弦误差会发生在两个测量方向,必须特别小心。例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸。同理,测量外侧时,也需注意取其正确位置。测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆柱或圆球形时应选平面之测砧。阿贝原理 (Abbe’ Law) 为测量仪器的轴线与待测工件之轴线需在一直在线。否则即产生误差,此误差称为阿贝误差。通常,假如测量仪器之轴线与待测工件之轴线无法在一起时,则需尽量缩短其距离,以减少其误差值。若以游标尺测量工件为例,如图2-4-6所示,其误差为 ,因此欲减少游标尺测量误差,需将本尺与游尺之间隙所造成之 角减小及测量时应尽量靠近刻度线。若以量表测量工件为例,如图2-4-7所示其量表之探针为球形,工件为圆柱,两轴心有偏位量 时,其接触的误差量为 。若量表之探针和工件均为平面时,若两平面倾斜一定角度 时,其接触的误差量为 如图2-4-8所示,此误差称为正弦误差。图2-4-9所示为凸轮在机构设计的误差分析图,为了减少磨损,常将从动件的端头设计成半径为 的圆球或圆柱体,两者间的压力角为 ,因此引起误差为。
5. 环境因素
测量时受环境或场地之不同,可能造成的误差有热变形误差和随机误差为最显着。热变形误差通常发生于因室温、人体接触及加工后工件温度等情形下,因此必须在温湿度控制下,不可用手接触工件及量具、工件加工后待冷却后才测量。但为了缩短加工时在加工中需实时测量,因此必须考虑各种材料之热胀系数 作为补偿,以因应温度材料的热膨胀系数 不同所造成的误差。常用各种材料的热膨胀系数如表2-4-2所示。
在选择压力传感器的时候我们要考虑他的综合精度,而压力传感器的精度受哪些方面的影响呢?其实造成传感器误差的因素有很多,下面我们注意说四个无法避免的误差,这是传感器的初始误差。首先的偏移量误差:由于压力传感器在整个压力范围内垂直偏移保持恒定,因此变换器扩散和激光调节修正的变化将产生偏移量误差。
其次是灵敏度误差:产生误差大小与压力成正比。如果设备的灵敏度高于典型值,灵敏度误差将是压力的递增函数。如果灵敏度低于典型值,那么灵敏度误差将是压力的递减函数。该误差的产生原因在于扩散过程的变化。
第三是线性误差:这是一个对压力传感器初始误差影响较小的因素,该误差的产生原因在于硅片的物理非线性,但对于带放大器的传感器,还应包括放大器的非线性。线性误差曲线可以是凹形曲线,也可以是凸形曲线称重传感器。
最后是滞后误差:在大多数情形中,压力传感器的滞后误差完全可以忽略不计,因为硅片具有很高的机械刚度。一般只需在压力变化很大的情形中考虑滞后误差。
压力传感器的这个四个误差是无法避免的,我们只能选择高精度的生产设备,利用高新技术来降低这些误差,还可以在出厂的时候进行一点的误差校准,尽最大的可能来降低误差以满足客户的需要。
欢迎分享,转载请注明来源:优选云