【答案解析】试题分析:交感神经兴奋,使心排血量增加,血管收缩,外周阻力增大,收缩压升高,A项错误。心输出量增多,心室收缩时射入主动脉的血量增多,则血管壁所受的张力就增大,收缩压升高,B项错误。血管收缩时,收缩压升高,C项错误。周围小动脉收缩,或血液粘度增加.以致周围阻力增高时,血压增高,其中舒张压增高更为显著,D项正确。
考点:本题考查血压,意在考查考生能理解所学知识的要点,把握知识间的内在联系,形成知识的网络结构。
冬天脑卒的人多,所以冬天的死亡率比较高
寒冷情况下,身体内的血小板会被激活,身体里边更容易发生血栓。当两种因素放在一起的时候,很容易导致脑卒。寒冷刺激使交感神经兴奋、茶酚胺分泌增多、小血管收缩、外周阻力增大、血压升高。并且秋冬季节湿度多变,更加剧了血压波动,易发生脑血管破裂,即百姓常说的“冬天容易出现爆血管”。肾上腺皮质激素分泌增多,使小动脉痉挛收缩、外周阻力增加,导致血压升高,也容易导致脑卒。
冬天气温低导致动作僵硬,加大了了冬天死亡率
冬天的时候,由于在寒冷的天气里,血液更多地输送给了比较重要的器官比如新、肺、肝里,这样使得胳膊、腿、膝关节和肩膀等血管收缩,这就导致这些部位血液流动减少,变得僵硬,进而影响关节的灵活性。而身体变得僵硬容易诱发一些危险,比如一不小心摔倒在地常造成骨折,而在冬天如果没有及时的被发现送往救治就容易增加死亡风险。
冬天气温低容易引发心脏病等相关疾病,加大了冬天的死亡率
冬天气温降低,血液浓稠度就会增加、血压容易不稳定,血液不但极易凝固还可能让本身就存在的动脉粥样硬化斑块破裂形成血栓,血栓很容易导致发生心肌梗死,从而加大冬天死亡率。
冬天气温低易导致呼吸道疾病,加大了冬天的死亡率
由于气温下降,抵抗力差的人尤其是老人若没有及时添衣,便很容易受凉,引起支气管动脉血循环障碍、纤毛运动减弱、呼吸道分泌物难以排出、甚至引起口腔粘膜干燥带血、气道平滑肌痉挛和机体抵抗力下降等,从而诱发出呼吸道感染病,最终可能导致死亡。
答案:在人体,总循环时约为23秒,肺循环时约为11秒一天血液循环约3757遍
一天心脏泵出的血液总约7560000毫升(约0.8秒一搏)
分析:心血管系统中每单位时间(如每分钟)的流过血量。在整体内,体循环各器官血流量之和等于左心室的输出量;而肺循环的血流量则等于右心室的输出量。血流量的变动是同血压和血流阻力的变动密切联系着的。
血流量与血压和血流阻力的关系 无论体循环或肺循环,这三者的关系是一样的,由于体循环的血液(除肺外)供应全身所有器官,因而血流量的变动远比肺循环为复杂。
体循环的平均血流量 (Q)首先决定于主动脉血压与腔静脉回心处血压之差(PA-PV),如果血流阻力保持恒定,则动静脉两端的血压差越大,则血管系统的平均血流量越多。其所以需要加“平均”一词,乃是因为即使在1分钟之内,无论血压或血流量都是经常有所变动,人们实际测得的只是平均的数值。在一般安静情况下,腔静脉入心处的血压基本上接近于零。因此,Q ∝(PA-PV)可以简化为Q ∝PA或P。P 即指平均主动脉血压值。
其次,血流量还决定于血流前进的阻力。阻力主要来自小动脉和微动脉,特别是后者。当血流通过这些微小动脉时,由于需要克服很大阻力,以致动脉血压显著下降。此外,血流阻力还来自血液本身的粘滞性,包括血细胞和血浆蛋白的浓度。再者,血流阻力还同血管长度有关,血管越长阻力越大。物理学上的泊肃叶氏定律综合上述诸因素,而提出阻力(R)形成的公式为:
R=8ηl/πr4
式中 l为管长,η为血液粘滞系数,r为血管半径。在生理情况下,管长和粘滞性比较恒定,因此,上式可简化为:
即血流阻力同微小动脉管半径的四次方成反比,说明血管口径只要稍有缩小,其阻力就大大增加。在机体内,血管的口径经常在神经和体液因素作用下而有所变动,或缩小或舒张,因此,在同样的动静脉压差之下,微小血管口径的改变便成为决定血流量的主要条件。
综合上述血压和阻力两个条件,血流量的变动规律便可以下式来表示:
这里阻力也称外周阻力。阻力的数值如用物理学的单位来表示,则是 dyn·s/cm5(达因·秒/厘米5)。为了避免计算的麻烦,生理学常用动脉压的mmHg数(毫米汞柱数)与血流量的ml/s(毫升/秒)数的比值来表示。如平均动脉压为90mmHg,平均血流量为90ml/s,则其外周阻力为90mmHg/90ml/s=1个阻力“单位”。正常人体总的外周阻力约变动于0.45~1.05阻力单位之间。
器官血流量 上述公式既可适用于整个体循环或肺循环的血流量,也可适用于体循环的各个器官的血流量。若应用于器官血流量的推算,则Q 就指某一器官的血流量,P 指进入该器官的平均动脉血压,R 则指该器官内的微小血管的阻力。
附表为一个正常人(以体重70千克计)在静息时和各种不同强度运动时(已持续运动10分钟)体循环各主要器官的血流量。运动强度可以每平方米体表面积每分钟的氧耗量来表示。
从表中可以看出:在机体静息时,肝、肾的血流量较多,肌肉的血流量较少;随着运动的加强,前者明显减少,后者则急剧增加;脑循环的血流量保持恒定,冠状循环有明显增加;皮肤血流量也相应增加,但在最强运动时反而减少。心输出量是各器官血流量的总和,随着运动加强而相应增加。由此可见,体循环各器官血流量在不同强度运动时,有增有减,这些变化是由于神经系统和体液因素的调节作用造成的(见血压)。
器官血流量的自身调节 器官血流量同血压一样,受神经系统和体液因素的调节。此外,某些器官血流量还受其内在机制的调节,这在肾脏表现得特别明显。当动脉压处于80~180mmHg之间时,肾血流量保持恒定,当低于80mmHg时血流量减少,高于180mmHg时则血流量增加。在一定血压范围内血流量能够恒定,有赖于器官的自身调节。即使在完全切除神经支配或移植的肾脏,甚至在人工灌流的离体肾脏,都可见到这种情况。说明这时肾血流量的恒定,并非来自外来神经或全身性体液因素的调节,而是由于该器官内部机制的作用。这自身调节主要是来自肾皮质小动脉管平滑肌的紧张性收缩,即当动脉压升高时,血管壁受到较大的牵张刺激,于是平滑肌紧张性收缩加强,从而使管径缩小,血流阻力增加,血流量相应减少;反之,动脉压下降时,小动脉管平滑肌松弛,阻力减少,血流量增加。这称为血流量自身调节的肌源学说。此外,还有其他一些因素,如局部的舒血管物质和血管外的组织间液压力等,也参预起着一定的作用。
血流速度 通常以平均线速度来表示,以mm/s(毫升/秒)为单位。指某一质粒(如红细胞)在血管中沿着直线流过的平均速度,不管心缩或心舒时流速的差异如何。血流平均线速度(V)与血流量(Q)成正比,而与血管横断面的总面积(A)成反比:
当血液由主动脉经中等动脉、小动脉而至毛细血管,再经小静脉而由腔静脉回心时,主动脉的口径虽大,但只有一根;毛细血管的口径虽小,但有无数根,故就毛细血管横断面的总面积而言,则比主动脉的横断面面积约大220~440倍。主动脉血流的平均线速度,约为220mm/s,依上列公式计算,则毛细血管血流的平均线速度,应介于220/440至220/220,即0.5~1.0mm/s之间,与实际测量的结果基本相符。腔静脉有两根,其横断面总面积比主动脉要大一倍多,故腔静脉血流线速度平均不及主动脉的一半。
动脉血流速度随着心缩和心舒而波动,心室收缩时血流加快,舒张时血流变慢。例如,马的颈动脉血流速度,心缩时约为520mm/s,心舒时约为150mm/s,差异很大。这种波动幅度在小动脉管即逐渐变小,到了毛细血管,流速的波动即不明显,静脉的血流则始终表现均匀。在接近心脏的腔静脉血流,由于受到房内压变动的影响而发生相应的改变,但波动的幅度很小。
循环时 血流中某一质粒经体循环和肺循环流过一周所需的时间,称为总循环时;如只经过肺循环一周,则其所需时间称为肺循环时。在人体,总循环时约为23秒,肺循环时约为11秒。循环时可因血流速度加快而缩短,如肌肉运动时或注射肾上腺素后,循环时可明显缩短。病理情况下,循环时也有大的改变,如患甲状腺机能亢进或贫血者,以及心肌衰竭时,循环时将延长。
欢迎分享,转载请注明来源:优选云