正相色谱基本上可以看作液固吸附色谱。其柱填料为吸附剂,表面有活性吸附点。溶剂和溶质分子可以吸附在活性中心。反相色谱是流动相极性大于固定相极性的色谱。
反相色谱的应用特点:反相介质性能稳定。分离效率高,它能分离蛋白质、肽、氨基酸、核酸、甾体、脂类、脂肪酸、碳水化合物、生物碱等含有非极性基团的物质。
正相色谱法的应用特点:全多孔型的微球型或无定型硅胶,然而,球形硅胶更适合于有效分离。用球形硅胶填充的正相柱具有较好的渗透性、较低的操作压力和较好的稳定性。
扩展资料:
反相色谱中最常用的有机溶剂有甲醇和乙腈。此外,乙醇、四氢呋喃、异丙醇和二氧六环等常用作改性剂。有机溶剂的梯度也会影响分辨率。梯度越小,分辨率越大。
正相色谱的保留机理类似于吸附过程。极性样品分子和溶剂分子吸附在柱填料表面的极性基团(吸附剂)上。对于常用于正相的氰基、氨基或二醇基固定相柱,吸附中心通常为键合配体或硅烷。在使用硅胶时,吸附位点为硅烷醇(一SiOH)。
参考资料来源:百度百科-反相色谱
参考资料来源:百度百科-正相色谱
反相高效液相色谱的固定相是非极性溶剂,常见的固定相是十八烷基键合硅胶,流动相是极性溶剂,常见的流动相是甲醇,乙腈。
反相高效液相色谱是由非极性固定相和极性流动相所组成的液相色谱体系,它正好与由极性固定相和弱极性流动相所组成的液相色谱体系(正相色谱)相反。
RP-HPLC的典型的固定相是十八烷基键合硅胶,典型的流动相是甲醇和乙腈。RP-HPLC是当今液相色谱的最主要的分离模式,几乎可用于所有能溶于极性或弱极性溶剂中的有机物的分离。 反相色谱法适于分离非极性、极性或离子型化合物,大部分的分析任务皆由反相色谱法完成。
扩展资料
反相高效液相色谱的原理:
在反相键合相色谱法中使用的是非极性键合固定相。它是将全多孔(或薄壳)微粒硅胶载体,经酸活化处理后与含轻基链(c4、C8、C18)或苯基的硅烷化试剂反应,生成表面具有烷基或苯基的非极性固定相。如共价结合到载体上的直链碳氢化合物正辛基等。
关于反相色谱的分离机理,吸附色谱的作用机制认为溶质在固定相上的保留主要是疏水作用,在高效液相色谱中又被称为疏溶剂作用。根据疏溶剂理论,当溶质分子进入极性流动相后,即占据流动相中相应的空间,而排挤一部分溶剂分子。
当溶质分子被流动相推动与固定相接触时,溶质分子的非极性部分或非极性因子会将非极性固定相上附着的溶剂膜排挤开,而直接与非极性固定相上的烷基官能团相结合(吸附)形成缔合络合物,构成单分子吸附层。
这种疏溶剂的吸附作用是可逆的,当流动相极性减少时,这种疏溶剂斥力下降,会发生解缔,并将溶质分子解放而被洗脱下来。
参考资料来源:百度百科-反相高效液相色谱
在反相色谱法中共价结合到载体上的固定相是一些极性很弱的直链碳氢化合物,如正辛基等。在反相色谱中的流动相极性要很强,而水是极性最强的溶剂。所以常常用水和不同浓度的、可以与水混溶的有机溶剂混合,以得到不同强度的流动相,这些有机溶剂称为修饰剂。反相色谱中最常用的有机溶剂有甲醇和乙腈,此外,乙醇、四氢呋喃、异丙醇及二氧六环也常被用作修饰剂。所谓反向,是指出峰次序先出极性强的组份,后出极性弱的组份。
欢迎分享,转载请注明来源:优选云