恐龙死后,身体中的软组织因腐烂而消失,骨骼(包括牙齿)等硬体组织沉积在泥沙中,处于隔绝氧气的环境下,经过几千万年甚至上亿年的沉积作用,骨骼完全矿物化而得以保存而形成恐龙化石。
恐龙死后,身体中的软组织因腐烂而消失,骨骼(包括牙齿)等硬体组织沉积在泥沙中,处于隔绝氧气的环境下,经过几千万年甚至上亿年的沉积作用,骨骼完全矿物化而得以保存而形成恐龙化石。
真假恐龙化石区别:真恐龙化石骨头的成分分别为碳酸钙、二氧化硅、磷酸钙;假化石骨头的主要是石膏做成,可能会有一些碳或者钙搀和进去。而且真的恐龙化石骨头会在不同的条件下就会钙化、硅化、磷酸钙化;假的则不会。
分为集中吧,楼主看看:还有生理性的,那种事可逆的1 病理性钙化是指骨、牙之外的组织中有固态钙盐沉积。其主要成分是磷酸钙和碳酸钙及少量铁、镁等物质。
钙盐沉积于坏死或即将坏死的组织或异物中,称为营养不良性钙化,此时体内钙磷代谢正常,见于结核病、血栓、动脉粥样硬化斑块、老年性主动脉瓣病变及瘢痕组织等,可能与局部碱性磷酸酶增多有关。
由于全身钙磷代谢失调而致钙盐沉积于正常组织内,称为转移性钙化,主要见于甲状旁腺功能亢进、维生素D摄入过多、肾衰及某些骨肿瘤,常发生在血管及肾、肺和胃的间质组织。钙磷代谢失调可加重营养不良性钙化。
适当补充软骨素和生物抗炎药物,可有助于防止关节软骨的退化,减轻犬关节发炎的临床症状。
动物骨骼
古生物学家熟知的、首次发现于澳大利亚的伊迪卡拉动物化石距今5.7亿年前,它们都是没有硬骨骼的软躯体动物。已知最早的具有硬的外骨骼(外壳)的动物化石是寒武系最底部的所谓“小壳化石”(smallshelled fossils),它们是一些小到只有几毫米长的锥形的或异形的小管,其矿物成分是碳酸盐或磷酸盐,这可以说是动物最早的骨骼化。令人惊奇的是,寒武纪初始蓝菌和其他一些藻类也出现了钙化现象。动物与植物几乎同时骨骼化(钙化)这一现象引起古生物学和沉积学家们的兴趣,并引起一场关于骨骼化原因的讨论与争论。
多数古生物学和沉积学家都认为,新元古代海水化学的变化促进了骨骼的进化产生。例如英国沉积学家Riding认为,在元古宙末到寒武纪之初,海水中镁-钙比值[m(Mg)/m(Ca)]下降,碳酸盐岩中白云石减少、方解石增多,这种变化与钙化的蓝菌出现相关。同时元古宙末海水中磷酸盐丰富,这和一些磷酸盐的小壳动物化石的出现有关。但俄国学者分析了元古宙末(文德期)到早古生代的碳酸盐时发现,镁与钙的比值并没有大的变化。另一方面,美国学者Grotzinger(1989)认为元古宙末海水钙的含量下降,海水的钙离子从早元古代的饱和或过饱和状态逐渐下降到新元古代晚期和寒武纪初期的低于饱和点的状态。因此,骨骼化的原因可能不在海水化学环境,而与生物本身有关。
寒武纪初始的动物外骨骼的出现与蓝菌的钙化。
元古宙末,多细胞底栖植物和浮游植物繁盛,随着动物的第一次适应辐射,海洋生态系统的生物多样性大大增长,食物链层次增多,物种之间竞争加剧。一些学者认为,生态系统中可能出现了肉食性和植食性的动物,骨骼化首先是对生态系统内部新关系的反应。换句话说,蓝菌和其他藻类植物的钙化可能是对植食性动物的采食的防护,一些小的无脊椎动物的矿化的外壳的产生可能也是对捕食动物的适应。如果上述解释是对的,那么我们可以说,骨骼最初是作为防护(防卫)系统而进化产生的。动、植物几乎同时骨骼化可能与元古宙末至寒武纪初的海洋生态系统内部种间关系复杂化相关。骨骼的进化可能与它的另一个重要功能有关,即骨骼的支撑功能,骨骼作为支撑系统使生物体的结构更符合力学原则。关于支撑的重要性,我们可以举出下面几项:
(1)多细胞生物的软组织、软躯体若没有硬的支撑系统则难以增大体积;
(2)支撑系统使躯体内的重要器官在空间上得以合理地配置,并保持相对稳定的空间位置,实现整体的功能谐调;
(3)支撑系统使动物的运动器官得以发展,并最终使动物能脱离水环境;
(4)支撑系统在植物中的发展使植物能扩大表面积,并向高处获得空间,最终使植物能向陆地发展。
骨骼在进化过程中,其防护功能与支撑功能互相结合,例如无脊椎动物外骨骼既是支撑系统,又是防护系统。脊椎动物骨骼的主要功能是支撑,其防护功能让位于皮肤。
A.头足类(直角石)的外骨骼:主要功能是防护;
B.甲壳动物的几丁质外骨骼:具有防护与支撑双重功能;
C.脊椎动物的内骨骼:主要功能是支撑,防护功能由皮肤承担
从化学组成上看,可以区分出以无机矿物为主要成分的骨骼和以有机质为主要成分的骨骼。多数无脊椎动物的骨骼以碳酸钙(方解石、文石)为主要成分,几丁质外骨骼见于节肢动物等较高等的无脊椎动物。几丁质是一种多糖(氨基多糖)类有机物,节肢动物(甲壳类,昆虫等)的外骨骼主要是由几丁质和矿化(磷酸钙化)的胶原纤维(一种蛋白质)组成。陆地植物的支撑基础是木质素,是多聚的芳香族化合物。从进化出现的顺序看,以碳酸钙、磷酸钙和硅质的无机成分为主的骨骼出现较早,其次是几丁质骨骼,然后是钙化的胶原纤维型骨骼。植物的木质化比较晚些。
绝大多数无脊椎动物的骨骼位于体外,即外骨骼。动物的外骨骼体制既有它的优越性,也有其限制性,外骨骼体制的优越性在于支撑、运动、防护三项功能紧密结合。外骨骼体制的限制性也很突出,例如:
(1)防护功能与运动功能之间的矛盾。这在软体动物中表现最为突出。厚重的贝壳影响运动能力,而薄的外壳却又减弱了防护功能。这正像人类的战争武器坦克一样,在装甲厚度与速度之间出现了矛盾。因此在软体动物中可以看到两种极端现象:具有厚重外壳的砗磲(Tridacna)已经丧失运动能力,丢失了外骨骼的乌贼却获得了高速率。
(2)生长的限制。动物的软躯体的生长受到坚硬的外骨骼的限制。于是我们看到昆虫是如何艰难地“蜕皮”的,但腹足类的螺旋形壳和某些环节动物的管状壳并不影响其内的软躯体的生长。
(3)呼吸的限制。节肢动物的外壳骨骼是体表呼吸的障碍,坚硬的外骨骼也不可能进化出像陆地脊椎动物那样的“负压呼吸”系统。昆虫的气管式呼吸系统的效率较低,限制了躯体体积的增长。
人的骨骼
人的骨骼是不断更新的,而且是每天都在更新。按钙计算,成年人每天约有700mg的钙要更新,相当于每天有3~5%的骨骼溶解了。又有3~5%的新骨骼形成了。
骨骼的主要成分是碳酸钙。一般成人体内的含钙量是1000~1250g,其中99%集中在骨骼和牙齿中,其余约l%的钙,存在于细胞内、细胞外液及血液中,称混溶钙。骨骼里的钙和骨骼外的混溶钙之间,存在着一种相互转变的平衡状态,就是骨骼的钙不断溶解变为混溶钙,同时,混溶钙又不断沉积成为骨骼。在这种一面溶解骨骼又一面生成骨骼的过程中,如果钙的溶解量和钙的沉积量相等,就称作平衡状态。如果在相同时间里,钙溶解得多,而沉积得少,就会产生骨质疏松现象。人的骨骼,一般在十八岁左右长度就稳定了,也就是说不会再长高了。但是,骨的密度还要继续增加。四十岁后,骨的密度就开始显示出下降的趋势。下降的快慢,则要看人的体质情况而定。一般是体力活动多或喜好运动的人缓慢些。
人体中的钙主要来自食物。许多食物都含有丰富的钙。但是,食物中的钙大部分都不能被吸收。成年人只能吸收20%左右,而80%左右的钙,仅仅是到人体内作了一次旅行,都被排泄出去了。
钙的吸收率这么低,究竟是什么原因呢?原因是多方面的。首先是维生素D对吸收的影响。维生素D的特殊本领,就是能促使小肠吸收钙和磷,使血液中钙、磷含量增高,促进骨骼的更新。当维生素D缺乏时,钙的吸收率就会降低。另外,食物中的其他成分,也能影响钙的吸收。例如,有不少蔬菜中都含有草酸,而草酸能与钙生成难溶解的草酸钙。难溶的沉淀物是不能吸收的,只能排泄出去。常见的蔬菜中,如菠菜、苋菜都含有较多的草酸。100g鲜菠菜,含606mg草酸;而100g鲜苋菜含的草酸更多,可达1142mg。如果把含钙非常丰富的豆腐和菠菜放在一起做汤,那么,豆腐中的钙,在进入人体之前,就会大受损失。身体缺钙的人,最好少吃菠菜和苋莱。除蔬菜外,谷类粮食中因含有较多的草酸,也会反应生成难溶解的钙的化合物,而影响钙的吸收。再有,年龄的大小也有关系。婴儿可以吸收食物中钙的50%以上,儿童吸收40%左右,成年人吸收约20%,40岁以上的成年人,钙的吸收率平均每10年减少5~10%。老年人的骨质会逐渐变得疏松。
根据人体对钙的需要,世界卫生组织建议每日钙的供给量:成年人为400~500mg,乳母、孕妇为1000~1200mg。我国的规定稍多一些。
在饮食方面,钙的来源以牛奶及其他奶制品为最好,不仅含量多而且吸收好。豆类制品、虾皮、蔬菜等,含钙也比较丰富。合理的调配膳食,对保障人的身体健康是十分重要的。
欢迎分享,转载请注明来源:优选云