
MEMS压力传感器原理:
目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机械电子传感器。硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。
MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一个典型的绝压压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成如图2的电阻应变片电桥电路。当外面的压力经引压腔进入传感器应力杯中,应力硅薄膜会因受外力作用而微微向上鼓起,发生d性变形,四个电阻应变片因此而发生电阻变化,破坏原先的惠斯顿电桥电路平衡,电桥输出与压力成正比的电压信号。
传统的机械量压力传感器是基于金属d性体受力变形,由机械量d性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。
mems即微机电系统(英语:MicroelectromechanicalSystems,缩写为MEMS)也叫做微电子机械系统、微系统、微机械等,指尺寸在几毫米乃至更小的高科技装置。微机电系统其内部结构一般在微米甚至纳米量级,是一个独立的智能系统是将微电子技术与机械工程融合到一起的一种工业技术,它的 *** 作范围在微米范围内。比它更小的,在纳米范围的类似的技术被称为纳机电系统。
微机电系统(MEMS,Micro-Electro-MechanicSystem)是一种先进的制造技术平台。它是以半导体制造技术为基础发展起来的。MEMS技术采用了半导体技术中的光刻、腐蚀、薄膜等一系列的现有技术和材料,因此从制造技术本身来讲,MEMS中基本的制造技术是成熟的。但MEMS更侧重于超精密机械加工,并要涉及微电子、材料、力学、化学、机械学诸多学科领域。它的学科面也扩大到微尺度下的力、电、光、磁、声、表面等物理学的各分支。
MEMS制造工艺(Microfabrication Process)是下至纳米尺度,上至毫米尺度微结构加工工艺的通称。广义上的MEMS制造工艺,方式十分丰富,几乎涉及了各种现代加工技术。
起源于半导体和微电子工艺,以光刻、外延、薄膜淀积、氧化、扩散、注入、溅射、蒸镀、刻蚀、划片和封装等为基本工艺步骤来制造复杂三维形体的微加工技术。
光刻:
光刻是将制作在光刻掩模上的图形转移(Pattern Transfer)到衬底的表面上。无论加工何种微器件,微加工工艺都可以分解成薄膜淀积,光刻和刻蚀这三个工艺步骤的一个或者多个循环。
光刻在MEMS制造过程中位于首要地位,其图形分辨率、套刻精度、光刻胶侧壁形貌、光刻胶缺陷和光刻胶抗刻蚀能力等性能都直接影响到后续工艺的成败。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)