洛杉矶为何被称为美国的“硅谷”?

洛杉矶为何被称为美国的“硅谷”?,第1张

现在每个国家几乎都会有硅谷,这意味着这是高科技的聚集地之一,而且教育资源十分丰富,洛杉矶就被称为美国的硅谷,为什么呢?我认为应该从它自身的环境条件以及教育资源和科技含量进行分析,这三个因素与硅谷的形成有着重要的关系,洛杉矶之所以被称为硅谷,肯定也是与这三个方面分不开,下面我将从这三个方面一一进行分析,它为什么会被叫做硅谷。

一、自然环境优越。

我觉得它之所以被称作硅谷的第一个重要原因,就是它的自然环境非常的优越,有着非常清新的自然环境,所以可以随心所欲研究高科技含量高的东西。因此我认为这些环境对于硅谷也非常重要,就是就因为这里的自然环境很优越,所以它非常的适合这个硅谷这样的一个地区,能够为高科技的研发提供一个很好的自然环境,更好地研发出新产品。

二、教育资源优秀。

硅谷的产生与教育资源息息相关,有了很好的教育资源,才可以有更多的人才去投入到高科技研发这个行业之中,所以洛杉矶之所以被称为硅谷,就是因为它的教育资源非常的丰富,有非常非常多优秀的大学,里面也有很多可以为国家效力的人才,这些人才对于硅谷的产生有着推动的巨大作用。

三、高科技企业多。

在洛杉矶中有着大量的高科技产业,这些产业以轻薄为主,在小小的芯片里面有着很高的科技含量,那么在这样一个地区有着如此多的高科技产业,所以它的专业度非常非常高,因此我认为这些高科技产业为洛杉矶争取了硅谷这个称号。

硅谷意味着国家科技的核心力量,洛杉矶这样一个优越的环境,孕育了很多的人才投身到高科技产业,所以他被叫做硅谷是名副其实的。

人们对开发环境稳定、通过可见光吸收并具有极性晶体结构的新型太阳能收集器有相当大的兴趣。车轮矿CuPbSbS3是一种自然形成的硫盐矿物,它在非中心对称的Pmn21空间群中结晶,并且 对于单结太阳能电池具有最佳的带隙。 然而,关于这种四元半导体的合成文献很少,它还没有作为薄膜被沉积和研究。

基于此,来自南加州大学洛杉矶分校的一项研究,描述了二元硫醇-胺溶剂混合物在室温和常压下溶解大块布氏体矿物以及廉价的块状CuO、PbO和Sb2S3前驱体以生成墨水的能力。合成的复合墨水是由大量的二元前驱体按正确的化学计量比溶解而得到的,在溶液沉积和退火后,生成CuPbSbS3的纯薄膜。相关论文以题为“Solution Deposition of a Bournonite CuPbSbS3 Semiconductor Thin Film from the Dissolution of Bulk Materials with a Thiol-Amine Solvent Mixture”于3月11日发表在Journal of the American Chemical Society上。

论文链接:

https://pubs.acs.org/doi/10.1021/jacs.9b13787

近来,Wallace等人通过对天然矿物的筛选,得到的材料具有热力学稳定性,不具有杂化卤化铅钙钛矿所固有的环境不稳定性问题。极性结构可以降低激子的结合能,减少材料中的复合速率。极性晶体结构可以使直接带隙材料的偶极不允许跃迁的几率和在吸收开始时振子强度的相应降到最低。从筛选到的自然生成的多种矿物中,符合选择标准的结果之一是车轮矿CuPbSbS3。车轮矿CuPbSbS3是一种硫盐矿物,它在正交晶立方Pmn21空间群中结晶,根据实验报道,从1.20 eV到1.31 eV的带隙是单结太阳能电池的最佳选择。有关CuPbSbS3的合成文献很少,目前只有少量的固态合成和一种溶剂热合成。 到目前为止,这种材料还没有以薄膜的形式沉积或研究。

基于以上考虑,研究者开发了一种碱化溶剂系统,它利用短链硫醇和胺的二元混合物,能够溶解100多种散装材料,包括散装金属、金属硫族化合物和金属氧化物。所得到的油墨在溶液沉积和温和退火后通过溶解和恢复的方法返回纯相的硫族化合物薄膜,使其适用于大规模的溶液处理。事实上,硫醇-胺油墨已被有效地用于大面积黄铜矿和酯基太阳能电池的溶液沉积,具有极好的功率转换效率。

研究者首次展示了车轮矿CuPbSbS3薄膜沉积的方法。通过简单地调整大块前驱体的化学计量学,就可以精细地调整复合油墨的组成,从而允许沉积纯相的CuPbSbS3。制备的CuPbSbS3薄膜具有1.24 eV的直接光学带隙,在~105cm-1的可见光范围内具有较高的吸收系数。电学测量证实,固溶处理的CuPbSbS3薄膜具有0.01- 2.4 cm2(V•s)-1范围内的流动性,载体浓度为1018-1020cm-3。这突出了在薄膜太阳能电池中作为吸收层的潜力,需要进一步的研究。

图1 车轮矿CuPbSbS3的晶体结构图

图2 合成油墨以及相关测试图

图3 将纯相CuPbSbS3从油墨中滴铸并退火到450 ˚C的粉末XRD图谱。

图4 CuPbSbS3薄膜的相关测试表征图

图5 CuPbSbS3薄膜电阻率(ρ)随温度变化的函数。

该方法可推广应用于其它多晶半导体薄膜的溶液沉积,包括与I-IV-V-VII组成相关的半导体,如CuPbBiS3。 结果突出了碱化法在解决硫酸盐吸收层沉积问题上的前景 。(文:水生)


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/8595667.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-18
下一篇2023-04-18

发表评论

登录后才能评论

评论列表(0条)

    保存