
物联网、大数据及人工智能都是近年来互联网行业比较火热的话题,三者之间具有非常紧密的联系。想探讨物联网、大数据及人工智能之间如何融合,首先需要了解其基本概念。
概念
1、物联网
根据百度百科的解释,物联网(InternetofThings,IoT)是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络(万物互联)。物联网网络架构设计由感知层、网络层及应用层组成,分别实现数据采集、数据传输及数据应用的功能。目前,物联网已经广泛应用于智慧医疗、智慧环保、智慧城市、智能家居及物流等领域。
2、大数据
大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有体量大(Volume)、及时性(Velocity)、多样性(Variety)、低价值密度(Value)及真实性(Veracity)的“5V”特性。
3、人工智能
人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。目前,人工智能正在改变各行各业的传统模式,作为人工智能分支的机器学习/深度学习已经广泛用于自然语言处理(NLP)、计算机视觉(CV)、机器翻译及推荐系统等领域。
深度融合
物联网、大数据、人工智能三者之间相辅相成,可以形成一个闭环通路。物联网作为智能感知层,主要负责采集现场的数据并将数据上传至分布式数据库中;大数据作为数据存储层,将经过ETL处理后的数据保存到分布式文件系统(HDFS)或数据仓库(HIVE)中;人工智能作为应用层,可利用sparkml或tensorflow实现相关的机器学习或深度学习算法,对存储在HDFS或HIVE中的数据进行数据挖掘。
应用案例
目前,物联网、大数据、人工智能已经广泛用于智慧城市、智慧环保、智慧交通等领域。以智慧环保中的空气预警为例,首先,物联网可以作为智慧感知层,安装在客户现场的空气监测设备采集的空气质量信息通过网络传输数据中心;而后,利用大数据ETL工具(spark、hive)进行数据清洗并存储至分布式数据库/文件系统/数据仓库中;最后,利用人工智能相关技术进行大数据分析(sparkml、tensorflow),预测未来若干天的空气质量,并以此辅助进行科学决策及改善环境。
如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能(AI)正赋能各个产业,推动着人类进入智能时代。
本文从介绍人工智能及主要的思想派系,进一步系统地梳理了其发展历程、标志性成果并侧重其算法思想介绍,将这段 60余年几经沉浮的历史,以一个清晰的脉络呈现出来,以此展望人工智能(AI)未来的趋势。
人工智能(Artificial Intelligence,AI)研究目的是通过探索智慧的实质,扩展人类智能——促使智能主体会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、专家系统等)、会学习(知识表示,机器学习等)、会行动(机器人、自动驾驶汽车等)。一个经典的AI定义是: “ 智能主体可以理解数据及从中学习,并利用知识实现特定目标和任务的能力。(A system’s ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation)”
其中, 符号主义及联结主义 为主要的两大派系:
从始至此,人工智能(AI)便在充满未知的道路探索,曲折起伏,我们可将这段发展历程大致划分为5个阶段期:
人工智能概念的提出后,发展出了符号主义、联结主义(神经网络),相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、人机对话等,掀起人工智能发展的第一个高潮。
人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,然而计算力及理论等的匮乏使得不切实际目标的落空,人工智能的发展走入低谷。
人工智能走入应用发展的新高潮。专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。而机器学习(特别是神经网络)探索不同的学习策略和各种学习方法,在大量的实际应用中也开始慢慢复苏。
由于互联网技术的迅速发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化,人工智能相关的各个领域都取得长足进步。在2000年代初,由于专家系统的项目都需要编码太多的显式规则,这降低了效率并增加了成本,人工智能研究的重心从基于知识系统转向了机器学习方向。
随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的技术鸿沟,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了重大的技术突破,迎来爆发式增长的新高潮。
人工智能(AI)已经在许多领域和场景中发挥了重要作用。以下是一些主要的AI应用场景:
自然语言处理(NLP):机器翻译、情感分析、文本生成、语音识别、语音合成、智能客服等。
计算机视觉:图像识别、目标检测、人脸识别、自动驾驶、无人机监视等。
推荐系统:、音乐、商品、新闻等推荐,广泛应用于互联网公司和电子商务平台。
机器学习:数据挖掘、预测分析、异常检测、金融风险评估等。
游戏:电子竞技、游戏角色智能行为设计、游戏策略优化等。
机器人技术:工业机器人、服务机器人、家庭机器人等。
医疗健康:疾病诊断、药物研发、基因编辑、医疗影像分析等。
教育:个性化学习、智能辅导、作文批改、在线教育平台等。
物联网(IoT):智能家居、工业物联网、城市交通管理、智能电网等。
金融科技:信用评分、投资策略、交易机器人、反欺诈系统等。
值得注意的是,随着AI技术的发展和应用,未来可能会有更多新的应用场景出现。
AloT的英文全称是“Artificial&InternetofThings”,广义上是指人工智能技术与物联网在实际应用中的落地融合,但伴随着5G浪潮的到来,“AloT”的内涵也愈加丰富。AIoT不是简单的AIIoT,而是应用人工智能、物联网等技术,以大数据、云计算为基础支撑,以半导体为算法载体,以网络安全技术作为实施保障,以5G为催化剂,对数据、知识和智能进行集成。
5G、AI等新兴技术在2019年全面爆发,让自动驾驶、城市大脑、AI养老、医疗影像等越来越多应用场景走下“神坛”进入我们的生活。5G具有高速率、大容量、低时延的特性,为万物互联的物联网(IoT)带来更高效的信息传输通道,在智能家居、车联网、无人驾驶、智慧城市、智慧医疗、智慧农村等领域都拥有广阔的前景。而AI技术的加持,则为IoT提供更智慧的信息收集入口,以及更丰富的应用场景。通过AI能够将一个比较孤立的设备拉入场景化,可大大提升IoT的响应空间。
你好,您是想问sensorPre-Roll录制功能是什么吗?sensorPre-Roll录制功能是装在闸机和门禁上面的感应前置录制功能的装置。sensorPre-Roll录制功能的作用就是通过人脸识别进行安保防护的产品,让人脸识别更加迅速、安全、可靠,人脸识别不等待、门禁快速通过成为现实。sensorPre-Roll录制功能是瑞芯微电子股份有限公司旗下的产品,公司成立于2001年,总部位于福州,在深圳、上海、北京、杭州、香港设有分/子公司,专注于集成电路设计与研发,目前已发展为领先的物联网(IoT)及人工智能物联网(AIoT)处理器芯片企业。人工智能 就是研究使计算机来模拟人的某些思维过程和智能行为的学科,以仿生学为基础,基于算法模型和计算速度的提升,以及人的神经元和计算机的门(门是计算机的基本组成单位)的共同之处而发展。物联网 指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
人工智能的学习过程需要大量数据信息,这就是人工智能和物联网的一个纽带,能将他们联系在一起,发挥更大的作用。简而言之,物联网由协议不同的终端通过某种约定好的协议进行信息交互与智能处理,而人工智能有数据便能不断学习并越来越聪明。
若人工智能是软件,那么需要物联网作为载体,若物联网是一个硬件,那么需要人工智能来驱动的。因此,我们也可以将物联网看成人工智能落地的一个载体。
我觉得二者相辅相成,但物联网可能更适应社会发展需求。原因如下
人工智能类似软件,需要物联网作为载体,物联网类似个硬件,是需要人工智能来驱动的。人工智能需要落地的应用作为载体,物联网就是一个最重要的载体。
物联网的英文是Internet of things简称IOT,翻译过来就是,,物物相连,万物互联,简单来说,即是物与物相连互联的互联网,但其实,物联网在我们的生活中已经无处不在,从我们在上学期间使用的校园一卡通,到高速上的ETC,再到近些年流行的智能手环可穿戴设备等等,都是物联网运用的例子,另外,随着AI技术的发展,物联网+AI带来了更多的可能性。
传统家居产品的智能化就是一个很好的例子,互联网时代,我们使用手机等设备获取输出信息,d属于人机交互模型,是以人为主体在网络上传输数据和信息,物联网主要分为3个组成部分,网络连接(connectivity)、数据处理,(device)、网络连接,传感器被安装在各种产品中,它们就是万物互联的物,这些传感器或者是芯片,让产品拥有感知能力和数据处理能力。
同时物联网感知设备每天可以收集产生大量的数据,如何利用这些数据并且分析数据,就成为难题,随着人工智能的发展,一些人工智能的分析方法就可以引入进来,人工智能为物联网面临的数据难题提供了最好的解决方案,人工智能通过强大的数据分析能力,在人类的帮助下做出最佳的决策,人工智能与物联网相融合,利用人工智能实时分析数据的物联网设备终端正在走入我们的千家万户。
最简单的设备例子:语音音箱和手机端语音助手,就是建立在自然语音处理的技术之上的物联网终端设备,物联网家庭摄像头也极大的依赖计算机视觉技术实施监控功能。这些物联网设备也只有借助人工智能技术的加持才能真正的发挥其优越性。物联网和人工智能 的关系就是一种相辅相成,携手并进,互相依赖的关系。
但人工智能的周期发展还是很长的,而目前很多大学把人工智能的核心的内容在研究生阶段培养,本科阶段用来测验学生是否有学习的潜力和能力。同时人工智能专业对教学设备和教学师资有过高的要求,而人工智能行业但凡有独特认知和能力的人才基本上在大型企业,没有在学校。人工智能对学历要求比较高。
物联网工程的市场庞大,因此就业前景也非常好。毕业生可从事信息传播时代内容方面的深度、综合、跨学科的信息传播工作,同时也能在新闻传播技术方面从事设计、制作等方面的传播技术类工作或者在政府管理部门、科学研究机构、设计院、咨询公司、建筑工程公司、物业及能源管理、建筑节能设备及产品制造生产企业等单位从事建筑节能的研究、设计、施工、运行、监测与管理工作等等。
传统家居产品的智能化就是一个很好的例子,互联网时代,我们使用手机等设备获取输出信息,都是属于人机交互模型,是以人为主体在网络上传输数据和信息,物联网主要分为3个组成部分,网络连接(connectivity)、数据处理,(device)、网络连接,传感器被安装在各种产品中,它们就是万物互联的物,这些传感器或者是芯片,让产品拥有感知能力和数据处理能力。
人工智能类似软件,需要物联网作为载体,物联网类似个硬件,是需要人工智能来驱动的。人工智能需要落地的应用作为载体,物联网就是一个最重要的载体。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)