未来物联网主要应用于那些行业

未来物联网主要应用于那些行业,第1张

原标题:2019年中国物联网行业市场分析:规模化应用时,融合各行各业推动智能化转型

物联网融合各行各业推动智能化转型

物联网作为全新的连接方式,近年来呈现突飞猛进的发展态势。全国人大代表、小米集团董事长兼CEO雷军表示,在中国,物联网的大规模应用与新一轮科技与产业变革融合发展,预计2022年,中国物联网行业市场规模将超过724万亿元。他表示,各行各业的智能化转型如火如荼,物联网作为连接人、机器和设备的关键支撑技术,应加快推动布局,抓智能化转型机遇。

工业物联:助制造业实现“智能+”

政府工作报告指出,要打造工业互联网平台,拓展“智能+”,为制造业转型升级赋能。在雷军看来,推动工业物联网的应用,是实现制造业“智能+”的必要途径。

他表示,随着数字经济新引擎5G技术的布局,将能满足机器类通信、大规模通信、关键性任务通信对网络速率、稳定性和时延的高要求,因此物联网应用场景十分广泛,尤其与车联网、无人驾驶、超高清视频、智能家居等产业深度融合,进一步应用到制造业、农业、医疗、安全等领域,为各行各业带来新的增长机遇。

前瞻产业研究院发布的《中国物联网行业应用领域市场需求与投资预测分析报告》统计数据显示,2015年全球物联网设备数量仅仅38亿台。截止至2018年底全球联网设备数量已经超过170亿,扣除智能手机、平板电脑、笔记本电脑或固定电话等连接之外,物联网设备数量达到70亿台。预测2019年全球物联网设备数量将达83亿台。并预测在2025年全球物联网设备数量将突破200亿台。

全球物联网市场的支出预计将在2017年增长37%,至1510亿美元。由于物联网的市场加速,这些估计数已向上修正。2017年全球物联网市场规模达到1100亿美元,截止至2018年末全球物联网市场规模增长至1510亿美元,并预测在2025年全球物联网市场规模将达15670亿美元。

2015-2025年全球物联网设备数量统计情况及预测

数据来源:前瞻产业研究院整理

2017-2025年全球物联网市场规模统计情况及预测(单位:十亿美元)

数据来源:公开资料、前瞻产业研究院整理

雷军表示,目前全球制造业竞争推动工厂向智能化转型,物联网作为连接人、机器和设备的关键支撑技术受到企业的高度关注。即将布局的5G技术优势,将能够较好满足工业控制需求,同时为制造企业提供远程控制和数据流量管理工具,以便更高效智能地管理大量的设备,并通过无线网络对这些设备进行软件更新。

雷军建议,我国应加大对高端装备、智能制造、工业物联网等重点领域的财税金融支持力度,引导中央、地方产业投资基金和社会资本,围绕大型制造企业上下游进行垂直改造,加强自动化产线、无人工厂等重大技术研发和成果转化,打造虚拟的产业闭环,提高产业的生产效率和整体国际竞争力。

农业物联万物生长数字化:物联网+农业会迎来怎样的“春天”

雷军表示,乡村振兴战略是以发展和创新的眼光推进现代农业建设。实施乡村振兴战略,就是推进农业农村的现代化,以创新驱动乡村振兴发展。

他认为,随着物联网在农业领域的应用越来越广泛,5G技术的应用将为建设智慧农业、数字乡村奠定坚实科技基础,带动农业实现发展变革。

什么是智慧农业呢

按照业界的说法,智慧农业以智慧生产为核心,智慧产业链为其提供信息化服务支撑。目前我国智慧农业有四大应用场景:数据平台服务、无人机植保、农机自动驾驶以及精细化养殖。

雷军建议,国家有关部门应制定出台5G农业应用补贴和优惠政策,并鼓励社会资本、运营商、互联网企业等共同参与,因地制宜规划打造智慧农业示范区、试验区,并在经验成熟后进行全国推广,全面提升农业领域的高新科技应用程度。

例如在养殖业,通过无线传感器网络技术,进行基本信息管理、疾病档案管理、防疫管理、营养繁殖管理,发展智慧养殖,实现数字化养殖。

在植保方面,借助物联网技术自动探测和记录区域内的微气候、墒情等环境信息,并结合植物保护专家系统来精确地预测病虫害的发生,从而通过无人机喷洒农药,精准高效解决农业生产的植保问题。

交通物联:无人驾驶或将最早“引爆”

“在5G众多的应用场景中,无人驾驶和车联网被认为是最有可能出现的引爆点。”雷军表示,智慧交通对通信网络有着极高的要求,而大带宽、低时延、海量的连接数量、严密的覆盖,这些都是5G技术的核心优势。

在雷军看来,智慧交通最可能爆发,一方面因无人驾驶具有巨大的节能潜力,在减少交通事故、改善拥堵、提高道路及车辆利用率等方面意义深远,并可直接带动智能汽车后市场等产业的快速发展。

另一方面,全球车联网产业进入快速发展阶段,信息化、智能化引领,全球车联网服务需求逐渐加大。基于5G技术的应用,智能交通领域将快速进入发展上行区间。

了解到,在重庆,长安、小康、力帆等汽车企业,均与百度的智能驾驶Apollo开放平台展开合作,包括自动驾驶全技术链流程、功能安全及信息安全、车联网、云服务等领域。

雷军建议,国家应研究、制定和出台关于智能交通的中长期发展目标,制定相应的法律法规和行业标准支持产业发展。尤其针对无人驾驶汽车的安全责任问题、技术试验问题、车联网的国家标准规范、智能芯片应用等产业发展关键点进行前置研判,通过鼓励性政策支持交通运输领域智能、安全、可控发展。

医疗物联:智能化就诊为“健康中国”加速

“物联网技术在医疗行业也有很广泛的应用空间。”雷军说,服务患者方面,可以采用LBS技术实现智能导诊,优化就诊流程,还可以借助可穿戴传感器和服务解决方案进行远程护理。

在保障设备质量方面,可以采用各类专用传感器,跟踪设备使用情况,借助预测性维护来修复关键医疗设备存在的潜在问题,完善设备运维体系。

环境监测方面,可以通过传感器对ICU室、手术室等特殊地点进行环境监测和预警。同时,基于医疗护理全流程的健康大数据,在安全保护前提下的数据标准细化、完善,以及数据网络的综合利用也显得尤为迫切。

在业界看来,在推进智慧医疗体系建设的大背景下,有多个方面的需要关注。比如,互联网医疗相关服务体系,包括发展互联网医疗、互联网+公共卫生服务、互联网+家庭医生签约等;另外还有医疗行业数据安全和服务质量安全。

雷军表示,要推动医疗实现智慧化,国家有关部门应逐步推动新技术在医疗卫生领域的应用,加快完善医疗物联网和健康大数据相关标准,制定医疗智能可穿戴设备及配套信息平台行业标准。

同时,出台针对物联网企业在医疗领域投入科学研究、应用开发的鼓励政策,使云计算、人工智能、虚拟现实/增强现实、物联网、区块链等技术在医疗卫生行业更好地集成创新和融合应用,满足人民日益增长的健康医疗新需求。

提高创新能力大力发展商业航天产业

关注物联网发展的同时,雷军今年参会还重点关注了在2018年热火朝天的商业航天的发展。

在雷军看来,航天是当今世界最具挑战性和广泛带动性的高科技领域之一,为服务国家发展大局和增进人类福祉作出了重要贡献。

近年,在运载、卫星和空间应用等领域,涌现出太空探索公司(SpaceX)、蓝色起源(BlueOrigin)、一网(OneWeb)等大批商业航天公司,被认为是最为活跃的创业领域之一。

雷军说,商业航天行业规模未来预计可达数万亿美元,将迎来空前的发展机遇,可重复使用火箭、巨型商业星座、商业载人空间站等航天计划,正在逐渐成真,彰显出商业航天推进技术进步和产业发展的巨大力量。

雷军建议,首先,我国应加快推动航天立法,确保民营企业长期稳定、合理有效利用空间资源的权利。建立商业航天市场准入退出、公平竞争、保险和赔偿、安全监管等机制,构建较为完善的商业航天法律体系。

雷军表示,商业航天属于快速发展的新兴行业,门槛高、投资大、战略意义显著,比多数产业更容易受到政府监管和行业政策的影响。

雷军建议,可由政府统筹,国企、民企多方聚力,布局商业航天产品智能制造,鼓励民企参与航天装备制造相关的国家重点项目,加速颠覆性航天技术创新与应用。

同时,制定商业航天装备产品量产及上下游企业的培育政策及实施细则,加大航天智能制造技术共享和转化力度,开放国家航天制造基础设施,颁布航天试验设施共享目录、有偿使用收费标准等。

在此基础上,雷军建议,应完善落实政府采购商业航天产品与服务机制,开放商业航天公司的行业准入,拓展商业服务与应用领域。

例如,可以简化商业火箭发射、航天测控、无线电频率等审批程序,引导鼓励民营企业战略性空间资源布局,承担轨道环境有序可控的应尽责任;可以进一步开放已有发射场,新增发射工位,满足高频次商业发射服务需求等。

3月29日17时50分, 我国在太原卫星发射中心成功发射长征六号改运载火箭,搭载发射的浦江二号和天鲲二号卫星顺利进入预定轨道,发射任务获得圆满成功。我们国家的航天事业又上了一层楼,可喜可贺。

先来了解一下长征六号改运载火箭

该运载火箭是我国新一代无毒无污染运载火箭,是我国首型固体捆绑运载火箭,用于发射太阳同步轨道卫星。浦江二号卫星主要用于开展科学试验研究、国土资源普查等任务,天鲲二号卫星主要用于开展空间环境监测技术试验验证。长征六号改运载火箭是长征六号火箭的改进型,是我国第一枚固液捆绑式火箭,主箭采用无毒、无污染的液氧、煤油推进剂,四个助推采用固体助推器。该型火箭不仅填补了我国700公里太阳同步轨道重载荷空白,还突破了分段式大推力固体助推器、固体助推捆绑分离、大功率机电伺服机构等多项关键技术,为我国核心航天发射能力提升注入新动力。

那么,这次运载火箭长征六号改成功首飞,有哪些关键信息值得我们关注,下面我就给大家总结一下。

固液发动机跨界结合

火箭为两级半构型,总长约50米,起飞重量约530吨,700公里太阳同步轨道运载能力不小于4吨。火箭芯一、二级直径为335米,一级采用两台120吨推力的液氧煤油发动机,二级采用一台推力18吨的液氧煤油发动机。芯级捆绑了4台2米直径的助推器,每个助推器装有一台120吨推力的固体发动机。

与我国其他火箭相比,长征六号改最大的区别就是它的火箭主体段使用的是液体发动机,而捆绑在四周的助推器使用的是固体发动机。液体发动机性能高、工作时间长,固体发动机推力大、使用维护简单,两者的优势结合从而实现了火箭可靠性更高、性价比更优。

首个智慧化发射场投入使用

此次任务使用的太原卫星发射中心9A工位,是我国首个智慧化发射场,该发射场运用物联网技术对地面各设施设备进行统一数据采集和整合,并通过大数据技术进行梳理融合,实现了全系统态势感知、全过程智能管控以及全流程驱动保证支持,大大提升了航天发射效率和发射指挥系统稳定性、安全性。据悉,9A工位的使用开启了我国新一代智慧化发射场建设的征程,为下一步简化发射流程、提升发射效率、增强发射稳定性、安全性意义重大。

“捆得牢,分得开”

助推器与芯级的固液捆绑,要求“捆得牢,分得开”。长六改通过“前端辅助传力+后端主传力”的捆绑连接解锁装置,相当于利用“肩扛+托举”两种力量,实现助推器与芯级的连接。为了进一步优化结构重量,长六改运载火箭打造了一款轻量化捆绑连接解锁装置,在运载火箭停放和飞行阶段下可承受并有效传递轴向和径向载荷。

智能大脑锦上添花

长六改火箭还配备了“健康管家”,让火箭更智能。与常规的运载火箭点火流程不同,火箭发射时,长六改火箭芯一级发动机先点火,4个固体发动机助推器再点火。

发动机健康诊断系统在芯级发动机点火后开始工作,此时固体助推器尚未点火产生强大的起飞推力,四个助推器的重量可以将整个火箭牢牢固定在发射台上。健康诊断系统仅有03秒的时间,对芯级发动机健康状态进行迅速诊断:若监测到发动机存在问题,要在须臾间完成故障发动机自动紧急关机,确保固体助推器不再执行点火程序。

为了确保万无一失,设计师们给火箭配置了三套相同的诊断系统,对发动机状态进行同时诊断,如果有两套及以上系统诊断同时判断故障存在,才认为发动机故障。这好比一场比赛配备了三名裁判员,有两名及以上裁判员判定球员犯规,才可以实施惩罚。

长六与长六改有何区别?

“长征”6号是中国自主研发的一款全液体燃料火箭。一、二级使用的是低温、无毒、无污染的液氧/煤油组合为氧化剂和燃料。“长征”6号设计之初的目的有以下几点:周期短、速度快、无污染、低成本、商业化、较高可靠性;可发射各种卫星载荷。全箭采用水平整体测试、水平整体星箭对接、水平整体运输起竖的“三平”测发模式,以自行式火箭运输起竖车发射,具有快速、干净、廉价等条件。

“长征”6号改由上海航天技术研究院(SAST)负责抓总研发,与长六不同的是,长六改火箭采用“一平两垂”(水平转运、垂直组装、垂直测试)的模式。之前,我国在新一代运载火箭家族中,固液结合尚无先例。长征六号改充分利用固体动力推力大、时间短,液体动力推力稳、比冲高的特点,采用两级半构型,液体芯级捆绑四枚固体助推器,使固液体动力实现“跨界合作”。

姓名:陈心语  学号:21009102266 书院:海棠1号书院
转自: 人工智能在中国航天的应用与展望_数据 (sohucom)

嵌牛导读

随着物联网、大规模并行计算、大数据和深度学习算法等技术的突破,人工智能近年来取得了突飞猛进的发展,在图像识别、语音识别、自然语言处理、无人驾驶、智能机器人等众多领域展现出令人期待的发展前景,并得到了国内外各政府的关注和支持;该文将人工智能技术与运载火箭、深空探测器、武器装备等航天应用相结合,论述其在自主规划航天任务、高效智能地面测试、全面快速设计保障等方面的应用模式,并从产品规划、顶层设计、产品打造、具体实施几个方面对中国航天后续发展人工智能技术提出了相关的对策建议。

嵌牛鼻子人工智能运用于航天。

嵌牛提问人工智能在航空航天中有什么运用呢?

嵌牛正文
岳梦云, 王 伟, 张羲格

(北京宇航系统工程研究所,北京 100076)

摘要: 随着物联网、大规模并行计算、大数据和深度学习算法等技术的突破,人工智能近年来取得了突飞猛进的发展,在图像识别、语音识别、自然语言处理、无人驾驶、智能机器人等众多领域展现出令人期待的发展前景,并得到了国内外各政府的关注和支持;该文将人工智能技术与运载火箭、深空探测器、武器装备等航天应用相结合,论述其在自主规划航天任务、高效智能地面测试、全面快速设计保障等方面的应用模式,并从产品规划、顶层设计、产品打造、具体实施几个方面对中国航天后续发展人工智能技术提出了相关的对策建议。

关键词: 人工智能; 大数据; 航天应用

0  引言

在十二届全国人大五次会议上,国务院总理李克强在作政府工作报告时表示,要“全面实施战略性新兴产业发展规划,加快新材料、人工智能、集成电路、生物制药、第五代移动通信等技术研发和转化”,这也是“人工智能”这一表述首次出现在政府工作报告中。

近年来,物联网、大规模并行计算、大数据和深度学习算法这四大催化剂的发展,以及计算成本的降低,使得人工智能技术突飞猛进。2016年12月,升级版“AlphaGo”化名“master”在60场互联网棋局车轮大战中连胜柯洁九段、陈耀烨九段、朴廷桓九段、芈昱廷九段、唐韦星九段等高手,取得全胜战绩,引起各界对人工智能的广泛关注与讨论。

1  人工智能的四大先决条件

11  物联网

随着摄像头、麦克风、各种类型传感器的发展,基于物联网技术的智能设备得到了飞速提升,而大量智能设备的出现则进一步加速了传感器领域的繁荣。这些传感器负责采集数据、记忆、分析、传送数据,将外部世界数字化,为智能系统提供了多维度的数据输入,成为数字世界与物理世界交互、反馈的接口和手段。

12  大规模并行计算

并行计算(Parallel Computing)指同时使用多种计算资源解决一个计算问题的过程,能够有效的提高计算速度和处理能力的一种有效手段。海量的分布式计算资源和超高速计算能力,令快速处理大量数据、训练复杂模型、用知识体系代替人类常识成为可能。这些知识和模型为人类和机器人提供智能的辅助决策,让人工智能成为现实。

13  大数据

大数据具备Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)的5V特点。在过去,要尽可能全面地认识某项事物,必须合理设计抽样调查的策略,使样本能够尽量覆盖全集特征。随着计算能力的提升,可以不再采用随机分析法这样的权衡之策,而采用所有数据进行分析处理。大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。海量的数据为人工智能的学习和发展提供了资源。通过知识挖掘,可以从大量有噪声的随机实际应用数据中,提取人们事先不了解但是隐藏在数据中的有价值的信息和知识。这种对隐性信息的挖掘是大数据价值的核心,也是实现人工智能的关键。

14  深度学习算法

深度学习算法作为机器学习的一个分支,由Hinton等人于2006年提出,是人工智能迎来新一轮飞速发展最重要的核心技术[1]。深度学习算法用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征,其中最广为使用的算法包括卷积神经网络(convolutional neural networks,CNN)、循环神经网络(recurrent neural network,RNN)长短期记忆网络(long short-term memory,LSTM)等,需要根据具体应用场景和数据特征加以选择。深度学习是对人类思维方式的建模,让机器能够理解人的行为,并将知识运用到与用户的交互中,达到机器“人性化”的终极目标,实现人工智能技术在商业中的落地。

2  人工智能的细分领域

21  图像识别

通过结合大数据的训练,人工智能可以对图像进行预处理、图像分割、特征提取和判断匹配。在图像识别的技术框架中,人脸识别应用非常广泛。人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。目前国内领先企业旷视科技的人脸识别准确率已高达99999%。此外,在产品生产质量检验上,图像识别技术应用也非常广泛,例如:机械类产品的裂纹自动识别检测。

22  语音/语义识别

利用特征提取技术、模式匹配准则及模型训练技术,语音识别能够让机器对采集到的语音信息进行识别和理解,转化为文本或命令。例如在军事上,可通过语音识别确认说话人的身份、侦听情报内容、或下发 *** 作指令,具有非常重要的价值。目前,针对中小词汇量非特定人的语音识别系统识别精度已超过98%,针对特定人的识别精度甚至更高。

23  自然语言处理

语言是人类区别其他动物的本质特性,因此理解语言也是人工智能的一个核心方向。综合语言学、计算机科学、数学等多种科学,自然语言处理研究能实现人与计算机之间有效通信的各种理论和方法,以一种智能高效的方式,对文本数据进行系统化分析、理解与信息提取。通过使用自然语言处理技术,可以管理大块的文本数据,或执行大量的自动化任务,并且解决如自动摘要,机器翻译,命名实体识别,关系提取等语言相关任务[2]。

24  无人驾驶

无人驾驶的核心技术是即时空间建模和人工智能技术。低成本高效率的感知解决方案是无人驾驶的基础,高精度底图的建立是无人驾驶的关键,具有深度学习的算法芯片是无人驾驶的核心。在过去六年内,谷歌无人驾驶汽车在公路上安全行驶220多万公里,仅发生17起交通以外,而且均是由人类失误引发的。

25  智能机器人

智能机器人融合了几乎所有人工智能分支技术,它至少需要具备感觉要素、反应要素和思考要素。它能够理解人类语言,感知、分析周围环境信息并调整自己的动作。目前已发展出多样化的机器人种类,从智能水平较低的工业机器人,到智能陪护机器人再到高级智能机器人。

3  人工智能在中国航天上的应用前景

31  更自主的任务规划

航天飞行任务规划是一个典型的知识处理过程,其中涉及较为复杂的逻辑推理和众多的约束条件,这种问题适合采用人工智能的方式加以解决,实现“人工智能+”。

311 “人工智能+运载火箭”——高容错飞行

运载火箭的飞行入轨面临的是一个地面难以复制和仿真等效的全新环境,飞行阶段程序转弯、发动机关机、级间分离、再次点火、姿态修正、载荷分离诸多环节中数百个零部件任一失效偏差都可能给火箭带来不可挽回的损失,是运载火箭成败与否的核心一环。高机动性、短飞行周期、恶劣环境都意味着人无法有效干预,因此,发动机推力下降、姿控极性接反均直接造成了任务失败,飞行风险居高不下。

目前的箭载计算机大多不具备重新规划飞行任务的能力,或需要地面人工计算制导诸元后,通过测量系统进行了上行注入,一定程度上实现d道的重规划,将卫星送入轨道[3]。

未来,将运载火箭设计阶段梳理的飞行过程故障模式与传感器参数相结合,研究基于人工智能的运载火箭飞行阶段故障自诊断以及深度学习训练方法,在分秒必争的运载火箭飞行段完成故障预测、故障定位与故障隔离工作,并通过轨迹d道重规划、制导姿控模型重生成,有效隔离局部故障,规避失败风险,最优化飞行轨迹与姿态控制,有效挖掘潜在运力资源[4]。

除此之外,在运载火箭发动机关机、级间分离后,分离的舱部段通过自主感知和自主控制技术,与卫星定位信息、地形布局信息动态匹配,通过发动机再次点火,实现舱部段自主飞行、平稳下落、精准落地以及主动防护,通过舱部段及各级发动机的回收再利用,显著压缩运载火箭任务周期,降低运载火箭制造成本。

312 “人工智能+深空探测器”——自主规划

现有行星探测器的主要前进方式为:拍摄前方照片通过遥测发回地面站, *** 作人员根据图像确定前进路线,再通过上行通道上注行动指令,实现探测车的行驶 *** 作。这种模式过于依赖地面测试人员,效率较低,很多时候由于行星表面环境较为恶劣,或者由于距离的确过于遥远,遥测控制信号也比较微弱,或者由于地球自转引起相对位置改变,无法实现遥测遥控,更难以实现探测器的实时控制。基于人工智能、视觉计算、监控装置的自动驾驶将大幅提高探测、地形勘测的效率。根据视频摄像头、雷达传感器以及激光测距器来了解周围的地形状况,利用图像识别等智能感知技术、智能决策和智能控制技术可以实现行星探测车的自主行动,选取最优探测路线,智能避开障碍物体,以最小的代价、最高的效率采集有用信息,大大辅助深空探测应用。

深空探测应用中,复杂航天器是由大量元器件和软件组成,长期的在轨运行,元器件的故障和软件的不完善在所难免,由于太空环境的特殊性,当某部分损坏时,难以通过人员进入太空进行判别和修复,利用人工智能技术结合空间高精度、高灵敏度机械臂,通过智能分析航天器数据,实现故障的自主定位、自动识别和在轨自主修复,在轨 *** 作、组装、拆卸、管理。

313 “人工智能+武器装备”——智能作战

通过多维度侦查探测系统,智能感知、发现、定位、跟踪敌方动态、电磁频谱信息、作战行动等战场态势信息,以最少的人员、更少的代价、最大化地获取战场情报数据,辅助智能判别与智能决策应用。如利用覆盖红外、可见光、微波雷达等多种技术手段,实现一体化、集成化的多模融合探测装置,智能感知多维度、多层次、多类型数据,然后应用数据配准、智能去噪等预处理手段获取高质量多源数据,再利用深度学习、模糊推理、专家系统等智能技术,建立目标识别和威胁判别模型,实现武器装备作战环境中目标智能探测感知和识别。

通过给武器装备各类传感器、探测器,智能探测感知飞行空间信息、拦截d信息等,数据传输给d载智能“大脑”,设定相应的优化准则、目标等,通过数据分析,智能自主决策,规划调整飞行d道,通过动力学气动调整,改变飞行轨迹,增强突防性能[5]。

人工智能使无人机个体具备较高的智能水平,协同作战能力显著提高,从而形成低成本的无人机蜂群战术。目前,以美国国防高级研究计划局(DARPA)为首的众多机构,都投入了大量经费就无人机集群在空中的协同作战理论和技术展开研究,包括无人机的快速编队、多机间通信协同,自主战术决策与下达作战命令等,构建多无人飞行器的任务自组织系统分布式体系结构。

32  更高效的地面测试

运载火箭的测试发射同样是一个多学科交叉,多专业耦合的复杂系统工程,是运载火箭成败与否的关键一环。状态准备、测试 *** 作、预案决策、数据判读,每一环都是技术能力的保障,都是知识经验的考验,同样每一步都离不开人的参与,成败维系在每一名人员身上,高水平人员的稀缺造成测试发射无法多任务并举,以及连续疲劳带来的风险造成测试发射周期无法进一步压缩,通过应用人工智能技术,可显著提升测试效率,降低发射成本[6]。

321 采集层

通过多样化的手段代替传统的传感器采集或人工直接观测,基于视频语音识别技术的应用可以大大减少火箭本身测点的布置。例如:发动机工作状态,可以通过对其工作时的声音进行频谱分析;一些机构的动作,可以通过非接触的摄像机直接观察;仪器仪表的指示灯状态监控,可以通过摄像头摄录信息,之后在后台用图像识别的方式的进行自动判断。

322 处理层

人工智能技术极大的提升了设备的数据处理与故障诊断的能力。对地面测试数据进行统一管理和应用,除了完成流程自闭环的反馈判断,还能够对数据的趋势、关联进行综合分析,设备不但可以掌握自身的运行状态,实现故障检测与隔离,启用合适的故障预案,还能够想设计 *** 作人员提供辅助决策和任务规划建议。

323 执行层

前端无人值守是未来火箭发展的必然趋势。电测过程中的脱查脱拔等人为 *** 作、异常故障时的抢险 *** 作,可以采用带视觉定位系统的机械臂来完成。此外,后端的人机交互也可以加入语音识别、手势感知等新型指挥手段,提高测试效率。

33  更全面的设计保障

331 智能设计

引入人工智能技术,可以将目前的半智能化计算机辅助设计系统升级为智能化计算机辅助设计系统,整合现有的海量资料及资源,模拟人脑思考的过程,彻底解决上述三类问题。采用人工智能技术的“航天大脑”可以根据型号需求提供总体文件的初稿,总体设计师进行决策修改后,“航天大脑”将系统需要的文件自动下发至系统级,并形成系统级文件的初稿,系统设计师进行决策修改后,“航天大脑”再将单机需要的文件下发至单机。在进行具体设计时,设计师仅需将设计输入文件提交至“航天大脑”,系统则会根据需求以及所学习的设计文件完成设计工作。如设计电缆网图时,设计师仅需将电缆的几何尺寸、点位定义等提交至“航天大脑”,“航天大脑”会自动绘制出电缆网图的模板,并自动给出诸如线缆型号推荐、连接器型号推荐等辅助决策信息,设计师将不需逐个翻阅厂家的手册即可完成设计,设计效率将大大提高。此外,由于“航天大脑”能够在很短的时间内完成大量文件的学习工作,并从中找出最优方案,设计的标准化和设计水平也能够得到保证。

332 智能制造

智能制造是一种由智能机器和人类专家共同组成的人机一体化智研制造系统,通过人与智能机器的合作共事,扩大、延伸和部分地取代人类专家在制造过程中的脑力劳动。它把制造自动化的概念更新,扩展到柔性化、智能化和高度集成化。

利用大数据技术,对于运载火箭制造装配需要的物资、工具、生产线、场地、工装、人员、运输车辆都统一进行编码采集与实时定位管理,将散布在全国各地的运载火箭制造装配资源条件,进行投筹管理,真正做到全国一盘棋。并与运载火箭发射任务计划有机对接,通过态势分析与智能预测,实现生产规模进度的最优化预测管理,成本进度最优化,并能够实现突发风险的动态应变处置,实现成本最优化管理。

在生产过程中,也完成了对火箭全生命周期信息的收集与保障。建立火箭的综合档案履历资料库,收集制造、装配、测试各个过程的数据与知识,构建大数据分析中心,作为智慧火箭的数据支撑与健康诊断的依据,降低设计和研制成本、提升测发效率、提升火箭的可靠性[7]。

333 远程支持

随着在运载火箭高密度发射、零窗口点火变得常态化,靠大量人力在靶场保障发射任务的模式已难以适应未来的发展需求。发射中心将从逐步从靶场向远程后方迁移,以日本epsilon火箭为例,科研人员远程使用两台笔记本就可实现火箭发射控制。

远程支持中心能够统一接收、存储各靶场各型号发回的测试数据并存储,并通过智能搜索引擎随时搜索查看关心的数据及相关文档;针对当发测试数据,结合历史数据进行大数据分析,提前识别出可能有质量隐患的关键节点;当靶场出现故障时,远程支持中心通过多媒体、虚拟现实等手段开展协同排故工作。

4  中国航天发展人工智能的对策建议

41  聚焦航天 “大脑”技术体系,做好战略规划和顶层设计

基于对大数据与人工智能的探索和积累,提出以技术-产品-服务为核心的航天“大脑”,其技术体系设想如图1所示。

图1航天“大脑”技术体系

411 技术层

智能感知是为机器装上触觉、视觉、听觉、神经和运动机构等智能硬件,使其具备感知世界的能力。通过集群和虚拟化技术实现对海量数据的快速预处理、分布式存储、并行计算等,为智慧大脑提供强大的记忆”和“计算”能力。

412 产品层

智慧产品包括智慧院所、智慧火箭、智慧装备和智慧民用产业。其中,智慧院所是所有智慧产品研制的基础,其可以充分激发员工创新创业热情,并为员工提供高效便捷的管理方式;智慧火箭指的是为火箭装上“触觉”和“大脑”,降低测发控对人的依赖,提升火箭可靠性;智慧装备指的是通过全寿命周期的健康管理,实现装备自主保障;智慧民用产业指的是通过军民融合方式,将军用技术转向民用领域,如智能健康监测、智慧家电远程测控、智慧照明、智慧安防等领域。

413 服务层

未来应全力推动大数据人工智能等技术与航天装备的结合,实现装备信息智能采集、远程保障、智能决策的完美集成,发展模式也将由提供产品向提供全方位解决方案的服务转变。

42  打造航天“大脑”系列产品,快速形成专业的能力和队伍

421 智慧院所

以创新为驱动、以信息化为基础、以知识为载体,利用智能科学理论、技术、方法和信息及自动化技术工具,充分有效地整合和优化利用各类内外部资源,保证能够持续创新,不断开发新产品、新服务,为航天单位的发展提供智能决策。

422 数据银行

建立航天大数据中心,成立“航天数据银行”,对产品研制、生产等多环节的数据进行统一管控、统一挖掘,实现数据挖掘效果的最大化,创造服务价值。智慧管理通过实现产品全寿命周期的统一管控,建立基于数据信息驱动的智能化研制模式,提升工作效率。智慧决策基于大数据技术,将先进管理理念、业务流程和管理模式等融合,实现管理信息化和智能化,达到“降本增效”的目的。

423 智能装备

通过大数据与互联网等高新技术,实现火箭的高度信息化与智能化。包括智慧的远程发射支持平台,智慧的测发指控平台,智慧的全寿命周期综合保障平台。智慧的远程发射支持平台通过大数据技术,训练后方的智能机器大脑,提升异地协同保障能力,减免专家到一线协助排故,解决问题。智慧的测发指控平台依托于语音识别、图像识别、大数据等技术,实现自主的测发指控过程。智慧的全寿命周期综合保障平台利用大数据技术保障数据统一化规范,完成自主健康评估、精准的寿命预测和数据驱动的视情维修[8]。

424 智慧产业

依托剩余载荷和末级监控,实现对地观测等服务,依托远程测控、健康监测、大数据、新一代信息应用技术,通过融合智慧城市中的多源数据,在智慧城市和智慧产业中,提升城市的精细化管理水平,同时为航天单位军民融合开拓增收,锻炼队伍。

43  分布落地执行,拓展航天“大脑”的服务

未来,应全力推动大数据人工智能等技术与航天装备的结合,实现装备信息智能采集、远程保障、智能决策的完美集成,航天企业的发展模式也将由提供产品向提供全方位解决方案的服务转变,如智慧的发射服务、全面的体系作战服务和智慧的军民融合服务。智慧发射最终要实现输入一个指定的位置坐标,为其精准、快速、智能、高效、低廉地发射到指定地点。全面的体系作战服务基于大数据和人工智能技术,能够实现装备的自主保障、战时智能决策和一体化的体系作战。智慧的军民融合服务结合现有的技术和民用产业,开展更多的智慧产业服务,通过信息和通信技术的应用,提升城市的管理水平,提高市民的生活质量,令城市运行和市民生活更加智能。

参考文献:

[1]夏定纯, 徐 涛 人工智能技术与方法[M]华中科技大学出版社, 2004

[2]张 妮, 徐文尚, 王文文 人工智能技术发展及应用研究综述[J] 煤矿机械, 2009, 30(2):4-7

[3]沈林城, 关世义 开放式飞行任务规划方法[J]宇航学报, 1998, 19(2):13-18

[4]席 政 人工智能在航天飞行任务规划中的应用研究[J] 航空学报, 2007, 28 (4) :791-795

[5]张 克, 邵长胜, 强文义 基于面向Agent技术的任务规划系统研究[J] 高技术通讯, 2002, 12(5):82-86

[6]鲁 宇 中国运载火箭技术发展 [J] 宇航总体技术, 2017(3):5-12

[7]郭凤英, 何洪庆 人工智能技术在航天领域的应用[J] 中国航天, 1996(6):19-21

[8]谭 勇, 王 伟 智能故障诊断技术及发展[J]飞航导d, 2009(7):35-38

Application and Prospect of Artificial Intelligence in China Aerospace

Yue MengYun, Wang Wei, Zhang Xige

(Beijing Institute of Aerospace SystemEngineering, Beijing 100076,China)

Abstract : With the breakthrough of technology such asnetworking, massively parallel computing, big data and deep learningalgorithms, Artificial Intelligence has achieved rapid development in recentyears, exciting prospects for development in image identification, voicerecognition, Natural Language Processing(NLP), self-driving, thus got theattention and support from governments of the world This paper combinesartificial intelligence technology with space applications such as rockets,deep-space detector and weapon equipment, then describes its applicationprospect in space Mission Planning, Ground Testing, Integrated Support, etcAnd puts forward relevant countermeasures and suggestions on the subsequentdevelopment of AI technology in China Aerospace

Keywords : Artificial Intelligence; Big Data; China Aerospace

收稿日期:2019-02-18;修回日期:2019-02-26。

作者简介:岳梦云(1988-),女,安徽合肥人,硕士,工程师,主要从事运载火箭与导d的地面测发控系统设计方向的研究。

文章编号:1671-4598 ( 2019 ) 06-0001-04

DOI : 1016526 / jcnki11-4762 / tp201906001

中图分类号:TP18

文献标识码:A

1、2020年1月7日,在西昌卫星发射中心,用长征三号乙运载火箭将通信技术试验卫星五号送入预定轨道,卫星发射成功。此卫星主要用于卫星通信、广播电视、数据传输等业务,并开展高通量技术实验验证。2020年首发成功!

2、2020年1月15日,在太原卫星发射中心,用长征二号丁运载火箭将“吉林一号”宽幅01星发射成功。(又称“红旗一号-H9”),这是第16颗吉林一号卫星。此次任务还搭载了NewSat7/8卫星、天启星座05低轨物联网卫星(人民一号)等3颗小卫星。

人民一号卫星质量40kg左右,设计寿命三年,可通过推进剂进行轨道和姿态调整。人民一号卫星共搭载了2台光学载荷,主载荷为一个为多光谱相机,地面分辨率为1米;同时搭载一台高光谱相机,地面分辨率为30米。

人民一号卫星具有专业级图像质量、高敏捷的机动性能、丰富的成像模式和高集成的电子系统等技术特点。该卫星在农业遥感、生态环境监测、灾害应急、黄河生态监测、乡村振兴战略实施、森林防火预警、态势感知等应用领域具有较强的优势。

3、2020年1月16日,在酒泉卫星发射中心,用快舟一号甲运载火箭成功将我国首颗通信能力达10Gbps的低轨宽带通信卫星——银河航天首发星发射成功。

这是我国民营公司自主研发的具有国际先进水平的低轨宽带卫星。该卫星可为用户提供宽带通信服务,入轨后将开展相关技术和业务验证。

4、2020年2月20日,在西昌卫星发射中心,用长征二号丁运载火箭,采取一箭四星方式,成功将新技术试验卫星C星、D星、E星、F星发射升空。卫星顺利进入轨道,主要用于在轨开展新型对地观测技术试验。

5、2020年3月9日,在西昌卫星发射中心,用长征三号乙运载火箭成功托举北斗三号GEO-2卫星直冲云霄。这是北斗系统的第54颗导航卫星,卫星顺利进入预定轨道。

北斗系统建设先后经历了北斗一号、二号、三号系统3个阶段,目前北斗一号4颗卫星已经全部退役,从北斗二号首颗星算起,中国已发射54颗北斗导航卫星,距离北斗三号系统建成,仅一步之遥。

6、2020年3月24日,在西昌卫星发射中心,长征二号丙运载火箭成功将遥感三十号06组卫星送入预定轨道。

长二丙火箭由航天科技集团一院抓总研制,本次任务搭载验证一子级剩余推进剂再入排放技术,持续提升落区安全性。此次是今年长二丙执行的第一次宇航发射任务,也是长征系列运载火箭的第329次航天飞行。

7、2020年4月24日,第五个中国航天日到来之际,国家航天局宣布,将我国行星探测任务正式命名为“天问”,将我国首次火星探测任务命名为“天问一号”,同时公布了首次火星探测任务标识“揽星九天”。

一箭双星技术,这是一个国家航空技术发展到一定阶段的标志性进展,这个代表着这个国家具备了大规模向太空发射各类卫星的能力,一箭多星技术更是代表着这个国家航空技术的突破性进展。

发射一颗卫星,成本很高的,虽然现在发射卫星也不是什么特别困难的事情了,基本上像放炮仗一样。我国发射了那么多的卫星,实现一箭双星的比较少,大部分是一个火箭一个卫星,然后那种实现一箭多星的更少,因为那难度太大了,风险也比较高,一颗火箭发射,一颗卫星,他成功的可能性很大,失败的可能性很小。但是一箭双星这个难度就是成倍提升的,因为它成本的下降也是成倍的呀。

能实现这种技术,意味着以后我们在向太空大规模发射探测器,发射卫星的时候更加具备优势,别人耗费同样的时间和精力,它只能发射一颗,我们可以发射两颗,甚至我们现在已经掌握了一箭多星技术,可以同时发射好几颗,这成本竟然下降了好多啊。因为发射一次火箭成本很高的,一次可以带多颗卫星上太空,就大大降低了它的发射成本,也让我们探索外太空的时候有了更大的优势。

可以说未来50年到100年太空的探索将成为顶级大国之间较量的新战场,因为地球上能探索的地方有很多,但是大家通过卫星基本上有了一个大概的了解。而外太空是茫茫宇宙,存在着很多的未知,但凡有一个国家在外太空发现了一点点有用的东西,那所带来的意义都是划时代的,可能对人类现有的科技体系是一个巨大的冲击。这一切的前提都建立在这个国家拥有足够强大的能力去探索外太空,首先就是需要这个企业探测卫星。

“武汉号”属于一个基于卫星通信的天基物联网 星座 ,整个 星座 计划由80颗卫星构成。

这个名为“行云工程”的项目,计划为全球提供基于卫星的通信服务。未来,无论汪洋大海、深山还是沙漠,卫星 星座 能覆盖的地方就有信号,为海洋、船舶、电力等领域提供无处不在的物联网服务。

行云02号卫星。中国航天科工

供图

为何命名为“武汉号”?

根据公开信息,快舟与行云卫星出自中国航天科工集团有限公司下属中国航天三江集团有限公司。中国航天科工是我国两家航天央企之一,航天三江为其下属企业,总部位于武汉。

2018年3月15日,航天行云 科技 有限公司(简称行云公司)在武汉揭牌,对外发布天基物联网组建计划,首个“湖北造”天基物联网组建工作启动。中国航天三江集团有限公司副总经理、行云公司董事长张镝当时介绍,该公司致力于研制和发射在低轨道运行的小卫星并组网形成 星座 ,建设天基物联网,实现全球范围内物联网信息的无缝获取、传输与共享。

实施发射任务的快舟一号甲火箭,是一款成熟的小型固体运载火箭,此前已完成8次商业发射,次次成功。

值得一提的是,火箭团队身处武汉,为表对医护人员的致敬与感激,火箭箭身涂刷了“致敬医护工作者群像”。

此次火箭箭身涂刷的“致敬医护工作者群像”。中国航天科工供图

“武汉号”上天所为何事?

3月29日,“行云工程”卫星团队已经全部抵达酒泉卫星发射中心。根据计划,4月中下旬将以一箭双星的方式,将行云工程项目两颗首发星送入太空。

此次发射的是行云二号01、02号卫星。其中,“武汉号”就是行云二号01星。

根据官方信息,两颗卫星由航天三江下属航天行云 科技 有限公司研发,将在低轨道上承担覆盖全球的“天基物联网”的通信传输服务功能,并在集装箱、海洋、船舶、电力、地灾、环境、林业、工程机械等行业开展应用测试。

行云公司天基物联网计划发射80颗行云小卫星,分α、β、γ三个阶段。2017年1月,首颗技术验证星行云试验一号乘快舟一号甲火箭已成功发射入轨。

具体而言,α阶段为试运营、示范工程建设,计划建设由行云二号01星与02星组成的系统。β阶段实现小规模组网,完成小 星座 系统构建,并开展第一阶段系统运营和市场开拓工作。γ阶段完成全系统构建,进行国内以及“一带一路”等国外市场的开拓。

本月的这次发射,行云二号01、02号两星入轨运行后,就将启动项目α阶段。

据项目方介绍,与传统物联网相比,天基物联网具有许多优势。系统覆盖区域地域广,能够实现全球无盲区通信。现阶段,全球超过80%的陆地及95%以上的海洋,移动蜂窝网络都无法覆盖,在海洋、岛屿、沙漠等偏远地区,天基物联网可以发挥至关重要的作用。

行云工程建成后的服务领域示意图。

中国航天科工供图

“武汉号”市场环境如何?

近年来,小卫星 星座 成为商业航天市场热门领域,众多航天企业先后公布雄心勃勃的 星座 计划,规模从数百颗卫星到上万颗不等。

其中,竞争最热门的领域为低轨通信卫星 星座 ,也就是为用户提供卫星互联网的 星座 。例如同属于中国航天科工的行云 星座 “兄弟 星座 ”——虹云 星座 ,计划构建156颗卫星组成的卫星宽带互联网,让沙漠、海洋、飞机上的用户也能享受优质互联网服务。

国内类似计划还有中国航天 科技 集团的“鸿雁”通信卫星 星座 。2018年12月29日,“鸿雁” 星座 首颗试验星已经在酒泉发射成功。

据官方发布的消息,“鸿雁” 星座 计划到2022年完成系统一期60颗卫星的组网运营,成为中国首个满足基本卫星数据通信需求的系统。二期预计2025年完成建设,“鸿雁” 星座 系统由数百颗宽带通信卫星组成,可实现全球任意地点的互联网接入。

在全球,SpaceX公司的星链计划(starlink)走在了前面。

2019年-2020年,SpaceX用6枚猎鹰火箭,以每次60颗卫星的速度,将360颗标准化的星链卫星送入太空。星链计划规模庞大,第一步就准备用1600颗卫星完成初步覆盖,轨道高度1150公里左右。第二步,用2825颗卫星完成全球组网。第三步,一共12万颗卫星组成低轨 星座 ,为全球提供5G级别的高速互联网服务。

此外,还有亚马逊创始人杰夫·贝索斯的Project Kuiper项目,以及Inmarsat、Intelsat SA和Eutelsat Communications SA等公司提出的相关 星座 。

早在上世纪90年代,摩托罗拉公司就建设过66颗卫星组成的铱星 星座 ,但遇上海底电缆和光纤技术突飞猛进,加之铱星用费高昂,导致用户不多,运营15个月后破产。

航天专家、小火箭公众号创始人邢强认为,星链与铱星相比,发射成本更低、用户面更广、通信技术更为先进,因而比铱星前景更为乐观。

编辑 张畅 校对 卢茜

简单来说,就是各种事物通过网络数据信号联系起来,就是物物相连的互联网。

把任何物品与互联网相连接,进行信息交换和通信,以实现对物品的智能化识别、定位、跟踪、监控和

管理的一种网络。

例如:

1大数据:加强食品与消费者之间的联系。

食品安全风险管理领域,从生产到流通,涉及到食品链的各个环节拥有着庞大的数据资源。

运用电脑编程(有对数据进行运算处理的程序),有效、适时应用大数据,让我们从这些数据中分析出很多有价值的信息,从而正确应对食品安全问题。

不论是农产品或是加工食品,为了提升品牌竞争力都寻求构建自身的食品安全追溯平台。而在食品安全追溯过程中会产生大量的数据,这些数据成为企业的隐形资产,其核心价值会在合理应用后才会有所体现。

2运用程序软件和各种识别,探测技术对物理信息(yhk等)进行识别处理,和信息交互(动车票的购买)。

物联网技术在道路交通方面的应用比较成熟。

随着社会车辆越来越普及,交通拥堵甚至瘫痪已成为城市的一大问题。对道路交通状况实时监控并将信息及时传递给驾驶人,让驾驶人及时作出出行调整,有效缓解了交通压力;高速路口设置道路自动收费系统(简称ETC),免去进出口取卡、还卡的时间,提升车辆的通行效率;公交车上安装定位系统,能及时了解公交车行驶路线及到站时间,乘客可以根据搭乘路线确定出行,免去不必要的时间浪费。 社会车辆增多,除了会带来交通压力外,停车难也日益成为一个突出问题,不少城市推出了智慧路边停车管理系统,该系统基于云计算平台,结合物联网技术与移动支付技术,共享车位资源,提高车位利用率和用户的方便程度。

部分内容来自:百度百科

维克号


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/12881669.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-28
下一篇2025-08-28

发表评论

登录后才能评论

评论列表(0条)

    保存