什么是物联网?

什么是物联网?,第1张

工业领域物联网发展趋势分析 传统工业加速向智能化转变
所谓“物联网”(Internet of
Things,IOT),又称传感网,指的是将各种信息传感设备,如射频识别(RFID)装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来并形成一个可以实现智能化识别和可管理的网络。
前瞻产业研究院数据显示,2016年我国物联网产业规模超过9000亿元人民币,同比增速连续多年超过20%。物联网作为通信行业新兴应用,在万物互联的大趋势下,市场规模将进一步扩大。随着行业标准完善、技术不断进步、国家政策扶持,中国的物联网产业将延续良好的发展势头,为经济持续稳定增长提供新的动力。移动互联向万物互联的扩展浪潮,将使我国创造出相比于互联网更大的市场空间和产业机遇。
物联网利用射频识别(RFID)、GPS、摄像头、传感器、传感器网络等感知、捕获、测量的技术手段,随时随地对物体进行信息采集和获取,实现智能化的决策和控制。因此,物联网在工业领域应用过程中,物联网相关技术和产品是智能工业的核心。
工业是物联网应用的重要领域。具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,可大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,传统工业加速向智能化转变。
根据前瞻产业研究院发布的《物联网行业应用领域市场需求与投资预测分析报告》测算,2014年,国内物联网在工业领域需求规模为1260亿元;2016年,国内物联网在工业领域需求规模为1804亿元。2017年,国内物联网在工业领域需求规模约为2354亿元。
物联网在工业领域应用问题分析
1、IT安全问题
和前几次由新的硬设备、技术所带来的工业革命不同,工业40是由互联网所带来的第四次工业革命。也因此,有66%的受访者认为IT安全是一大挑战,当企业的IT系统连上网络,随时可能有一些未知的威胁出现在仓储管理系统、机器设备或供应链当中。
2、制造系统管理问题
工业40除了带来生产效率之外,同时也改变传统制造业的思维。当智能生产真正落实后,将会对制造管理系统带来巨大的变革,且势必变得更为复杂,包括整体的生产物流、人机协同作业等改变,也让员工培训更显重要。
3、通讯基础设施建设问题
通讯网络是实现工业40的重要关键,但是要建立一个让所有组织都能够配合的网络,必须要有一个一致的接口、通讯标准和规范。目前许多标准都还未建立,例如工业通讯、工程、IT安全、数字化工厂、设备整合等都还未被纳入整体参考架构中。
物联网在工业领域应用前景及发展趋势预测
近年来,我国政府通过工业化与信息化融合战略正在大力推进物联网技术向传统行业中的深度渗透。工信部于2013年9月发布的《工业化与信息化深度融合专项行动计划(2013-2018年)》中重点提出的互联网与工业融合创新试点工作已经进入了全面实施阶段。
以物联网融合创新为特征的新型网络化智能生产方式正塑造未来制造业的核心竞争力,推动形成新的产业组织方式、新的企业与用户关系、新的服务模式和新业态,推动汽车、飞机、工程装备、家电等传统工业领域向网络化、智能化、柔性化、服务化转型,孕育和推动全球新产业革命的发展。
美国制造业巨头通用电气公司充分利用物联网技术,已推出了二十余种工业互联网/物联网应用产品,涵盖了石油天然气平台监测管理、铁路机车效率分析、提升风电机组电力输出、电力公司配电系统优化、医疗云影像等各个领域。AT&T基于GE的软件平台Predix开发M2M解决方案,越来越多的工业机器将通过M2M连接到网络。
例如:物联网应用在智能工厂,具有相当广泛的应用前景,经济效益和社会效益明显。导入物联网的智能工厂,至少可以实现以下五个功能,即:电子工单、生产过程透明化、生产过程可控化、产能精确统计、车间电子看板。通过这五大功能,不但可实现制造过程信息的视觉化,对于生产管理和决策也会产生许多作用。根据物联网在智能工业的产值贡献比例来看,2023年国内物联网在工业需求规模在7821亿元左右。

物联网是在互联网的基础上改变,利用RFID、无线通讯、智能识别技术把物体的状况转化为各种参数,然后通过互联网进行数据传递、共享的网络。简单来说就是通过特定技术实现物与物的信息交互和联动,因此物联网技术在工业制造方面有着紧密的联系。
物联网能够有效地推动制造业信息化水平的提高,物联网是基于互联网存在的,建立物联网就需要制造业企业建立一个良好的内部信息化体系,包括系统的启用,基础数据的统一,异构系统完成集成实现数据的顺利交互等等。
物联网能够推动供物流、供应链管理体系优化,通过物联网技术,使制造商品从设计到生成、仓储、运输等一系列环节变动容易监控,监控过程中,信息数据及时准确的在不同系统间传递,这样就能有效优化产业链、减少库存,缩短供货时间。
物联网能够提升生成质量,由于物联网通过传感器可以获取产品在所有生成环节的数据,通过大数据分析等一系列技术,更加容易、准确的定位出工业制品受所用原料的组成、温度和工作环境、废物、运输等因素的影响程度,方便制定更有针对性的工艺提升方案。
虽然物联网在工业制造方面有着广阔的前景,但是由于物联网应用以及终端数量极其庞大,在建设时应当综合规划,建立统一的数据标准,在内部实现数据治理、数据分析,解决异构系统交互的问题,才能建立起高效的物联网,体现物联网的优势。

物联网、大数据及人工智能都是近年来互联网行业比较火热的话题,三者之间具有非常紧密的联系。想探讨物联网、大数据及人工智能之间如何融合,首先需要了解其基本概念。

概念

1、物联网

根据百度百科的解释,物联网(InternetofThings,IoT)是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络(万物互联)。物联网网络架构设计由感知层、网络层及应用层组成,分别实现数据采集、数据传输及数据应用的功能。目前,物联网已经广泛应用于智慧医疗、智慧环保、智慧城市、智能家居及物流等领域。

2、大数据

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据具有体量大(Volume)、及时性(Velocity)、多样性(Variety)、低价值密度(Value)及真实性(Veracity)的“5V”特性。

3、人工智能

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。目前,人工智能正在改变各行各业的传统模式,作为人工智能分支的机器学习/深度学习已经广泛用于自然语言处理(NLP)、计算机视觉(CV)、机器翻译及推荐系统等领域。

深度融合

物联网、大数据、人工智能三者之间相辅相成,可以形成一个闭环通路。物联网作为智能感知层,主要负责采集现场的数据并将数据上传至分布式数据库中;大数据作为数据存储层,将经过ETL处理后的数据保存到分布式文件系统(HDFS)或数据仓库(HIVE)中;人工智能作为应用层,可利用sparkml或tensorflow实现相关的机器学习或深度学习算法,对存储在HDFS或HIVE中的数据进行数据挖掘。

应用案例

目前,物联网、大数据、人工智能已经广泛用于智慧城市、智慧环保、智慧交通等领域。以智慧环保中的空气预警为例,首先,物联网可以作为智慧感知层,安装在客户现场的空气监测设备采集的空气质量信息通过网络传输数据中心;而后,利用大数据ETL工具(spark、hive)进行数据清洗并存储至分布式数据库/文件系统/数据仓库中;最后,利用人工智能相关技术进行大数据分析(sparkml、tensorflow),预测未来若干天的空气质量,并以此辅助进行科学决策及改善环境。

物联网(The Internet of things)的概念是在1999年提出的,它的定义很简单:把所有物品通过射频识别(RFID)、红外感应器、全球定位系统、激光扫描器等信息传感设备与互联网连接起来,进行信息交换和通讯,实现智能化识别、定位、跟踪、监控和管理。一系列的重要讲话、研讨、报告和相关政策措施表明:大力发展物联网产业将成为中国今后一项具有国家战略意义的重要决策,各级政府部门将会大力扶持物联网产业发展,一系列对物联网产业利好的政策措施也将在不久后出台。值得一提的是,中国股市在受钢铁、银行、券商、基金重仓等权重板块集体倒戈的影响下,大盘一路下滑,但以远望谷、新大陆、厦门信达、东信和平、大唐电信、上海贝岭为代表的物联网题材股逆势拉升,连续数天涨停。物联网概念股的疯狂逆向拉升充分表明了物联网的强大生命力和影响力,物联网再次在中国掀起了巨大波澜。物联网概念从2009年迅速崛起,2010年已经成为了行业内的年度热点话题。今天我们就来说说物联网。物联网是IT发展方向“物联网”概念的问世,打破了之前的传统思维。过去的思路一直是将物理基础设施和IT基础设施分开:一方面是机场、公路、建筑物,而另一方面是数据中心,个人电脑、宽带等。而在“物联网”时代,钢筋混凝土、电缆将与芯片、宽带整合为统一的基础设施,在此意义上,基础设施更像是一块新的地球工地,世界的运转就在它上面进行,其中包括经济管理、生产运行、社会管理乃至个人生活。

我们在了解人工智能技术的时候,对于深度学习的概念进行了一次普及,今天我们就一起来学习一下深度学习对于物联网的发展都有哪些影响作用。下面北京电脑培训就开始今天的主要内容吧。



技术

在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。由于商业和生活质量提升方面的诉求,应用物联网(IoT)技术对大数据流进行分析是十分有价值的研究方向。这篇论文对于使用深度学习来改进IoT领域的数据分析和学习方法进行了详细的综述。从机器学习视角,作者将处理IoT数据的方法分为IoT大数据分析和IoT流数据分析。论文对目前不同的深度学习方法进行了总结,并详细讨论了使用深度学习方法对IoT数据进行分析的优势,以及未来面临的挑战。

在本系列文章中,已介绍了深度学习和长短期记忆(LSTM)网络,展示了如何生成用于异常检测的数据,还介绍了如何使用Deeplearning4j工具包。本篇文章中,将介绍开源机器学习系统ApacheSystemML如何通过动态地优化执行并利用ApacheSpark作为运行时引擎,帮助执行线性代数运算。并展示了在时序传感器数据(或任何类型的一般序列数据)上,即使非常简单的单层LSTM网络的性能也优于先进的异常检测算法。

GoogleAssistant和其他自然语言理解平台正在推动用户如何使用他们的技术。无论是执行器诸如设置计时器之类的简单任务,还是进行更复杂的任务(例如Google智能助理调整恒温器),您都可以参与其中。在这篇文章中,逐步介绍了如何构建自己的助手应用程序,通过简单地要求Google来控制AndroidThings设备来浇灌植物。

开源

tinyweb是一个用于在运行有MicroPython的ESP8266/ESP32等微型设备之上的简单轻便的>

Mynewt是一款适用于微型嵌入式设备的组件化开源 *** 作系统。ApacheMynewt使用Newt构建和包管理系统,它允许开发者仅选择所需的组件来构建 *** 作系统。其目标是使功耗和成本成为驱动因素的微控制器环境的应用开发变得容易。Mynewt提供开源蓝牙50协议栈和嵌入式中间件、闪存文件系统、网络堆栈、引导程序、FATFS、引导程序、统计和记录基础设施等的支持。

AngularIotDashboard是一个基于Angular4的物联网领域的仪表板。它是一个适用于任何浏览器的实时兼容仪表板,其目标是成为智能家居,智能办公室和工业自动化的d性前端。拥有许多可重用组件,开发者可以基于AngularIoTDashboard启发和实施自己版本的托管物联网仪表板。

硬件

FemtoUSB是一个基于Atmel的ARMCortexM0+产品ATSAMD21E18A的开源ARM开发板。其被设计成对那些对ARM设计感兴趣的人的基础起点,特别那些准备从AVR8位硬件转换到功能非常强大的ARM32位工具。其从电路板设计,原理图和零件清单完全是开源的,可以让开发者学习设计ARM芯片、编译工具链、ARM芯片的基本的电路图等等的内容。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/dianzi/10466460.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-05-08
下一篇2023-05-08

发表评论

登录后才能评论

评论列表(0条)

    保存