
随着互联网的不断发展,越来越多的智能设备出现在我们的生活之中,而今天我们就一起来了解一下,关于移动端智能AI设备的一些发展趋势,下面电脑培训就开始今天的主要内容吧。
关于智能终端设备
相信拥有一台真正可以依赖、可以帮助我们处理日常任务的智能终端设备是每一个人的梦想,这也是很多企业的产品目标。那么在吴琨看来,在未来,智能终端设备会是什么样的出现哪些发展趋势呢
在吴琨看来,智能终端设备可以分为这么几类,一类是IoT(物联网)设备,这些设备的特点是可以连入小范围的局域网,然后通过某个中央枢纽节点路由到广域网。IoT的设备只需要完成一些简单交互和功能,所以终端运算能力、存储能力和智能程度比较低,交互方式应该以简单语音指令为主。
二类是特定领域的智能设备,如服务机器人、智能音箱等。这类设备一般都有触屏,所以需要有更为复杂的交互,除了语音识别外,还需要对话管理、语义理解、图像识别方面的技术应用。所以,对软硬件的要求也会比较高,需要终端有较强的运算能力。
三类是平台化的智能服务加上具有中等运算能力的终端设备。例如将大型游戏的运算从终端转移到云端,然后将数据传回终端。这类终端也需要承担部分运算以便弥补网络设施带来的延迟,但相对来说,会比IoT要更为强大。
关于人机交互
真正的人机交互的话题更多的是哲学层面的。如果要实现人和人一样的人机交互,那么看起来通用人工智能是必不可少的前提。
目前学术界有诸多观点,吴琨比较看好的是三个条件:一是比目前数据量更大、全且完整的海量无结构数据;二是比目前计算能力强得多的计算机;三是比目前网络结构更为复杂但通用的更趋近于人脑的神经网络。然后我们就可以尝试去让计算机从数据中自己发现知识、学习知识。不过,目前这些条件都不满足。因此,我们还是应该脚踏实地,从具体业务、需求出发,走出一条AI实践、AI落地的路,从许许多多这样的路中,总结归纳出更好的方法论,为实现远期目标做有效积累。
机器学习将向终端转移
近年来,机器学习特别是深度学习的模型推演,逐渐出现了从云端向终端迁移的趋势。但终端机器学习取代云端机器学习会成为未来的趋势吗
吴琨认为,出现这一现象主要有这几个原因:先是终端硬件计算能力的提升,特别是专门用于神经网络计算的AI芯片逐渐成为中设备的标配。二是行业对数据保护和用户隐私的重视,使得非必要数据可以不必通过上传到服务器就能服务用户。三是终端计算可以规避网络延迟和无网弱网情况,使得服务的体验更好。四是科技的发展使得AI工程技术人员能够更有效的利用数据来达到同样的服务效果,使得终端计算的可行性也进一步提高。
1 物联网(Internet of Things,IoT)
指将传感器、执行器、智能设备、人工智能和云计算等技术融合在一起,通过互联网连接、交互和协同工作来实现智能化和自动化的网络。
2 传感器(Sensor)
指一种可以感知并测量实际物理量的设备或系统,通过将物理信号转换成数字或模拟信号来输出相应的测量结果。
3 执行器(Actuator)
指一种可以根据输入信号转换成机械或电动力的设备或系统,用于控制或驱动实际物理行为。
4 物联网平台(IoT Platform)
指一种用于将各种传感器、执行器和智能设备互联互通的技术平台,提供数据采集、数据分析、数据处理和数据交互等功能。
5 云计算(Cloud Computing)
指一种基于互联网的分布式计算和存储模式,将计算和数据存储分布在多个服务器上,提供虚拟化和动态扩展等功能。
6 数据采集(Data Collection)
指通过传感器和其他设备收集和记录现实世界中的数据,如温度、湿度、压力、位置、声音等。
7 数据处理(Data Processing)
指将采集到的数据进行分类、筛选、转换、分析等处理,以提取有用的信息,比如预警、异常检测、预测分析等。
8 数据交互(Data Interaction)
指通过互联网将数据传输到物联网平台等服务器上,并将处理结果返回到智能设备中,以实现设备之间的互通和协同工作。
9 人工智能(Artificial Intelligence,AI)
指模拟人类智能和行为的计算机系统和算法,用于实现自动化、智能化和自主学习等功能,如图像识别、语音识别、机器人等。
10 区块链(Blockchain)
指一种去中心化的分布式账本技术,用于实现安全性、透明度和信任度的高效交互和协同,如支付、合同管理、安全通信等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。中国最缺视觉等机器人技术。根据查询相关资料信息,中国目前最缺乏的机器人技术包括机器视觉技术、智能语音识别技术、智能自动化技术以及运动控制技术。这些技术在物联网、服务机器人、机械臂等行业均有广泛应用,是当前机器人技术发展的重要方向。语音,一般根据你输入法的设定,那就是你把普通的输入法改成了繁体,在输入法中改回来就行
语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。 语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。 语音识别技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。中国物联网校企联盟形象得把语音识别比做为“机器的听觉系统”。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。 语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别技术车联网也得到了充分的引用,例如在翼卡车联网中,只需按一键通客服人员口述即可设置目的地直接导航,安全、便捷。
云计算已经成为全世界公认的最大趋势,Gartner研究报告显示,截至2015年末,全球云计算市场规模已达1750亿美元,而在2019年将有望突破3000亿美元,国内BAT巨头也在对该市场虎视眈眈。
此次百度方面宣布进行品牌升级,将"百度云计算"全新升级为"百度云",与阿里和腾讯不同的是,百度最为擅长的部分在于人工智能,而此次百度也将云计算的砝码加注于人工智能领域。
百度总裁张亚勤表示在未来随着大数据的指数级增长,以及人工智能的突破性进展,"云计算大数据人工智能"成为未来发展关键,互联网的下一幕将由人工智能开始主导,而各行各业也将依托于"智能"完成对于自身的改造,百度云也为此进行了全面升级。
事实上在人工智能的驱动下,未来的云计算正在驶入全新的智能领域领域,其主要表现出三大趋势。
一,大数据激增,运算能力成云计算新焦点
传统时代并不存在云计算的说法,因为早期需要解决的问题是存储问题,成千上万的企业网站需要联网,而这些企业也仅仅只需要托管服务即可。
但是移动时代却是一个关键性的转折点,随着移动时代的到来,用户在企业产品中留下的数据开始激增,相比于pc时代可以用天文数字来形容,并且电商、物流、医疗、教育、营销、金融等诸多行业被全面波及,这些企业也越来越需要通过用户的数据,来对自己进行产品的调整以及改进规划,对于运算能力有着极大的需求。
之前的云计算解决了存储问题,但是并没有解决企业如何处理大数据的问题。因此,如何高效处理大数据则是未来的全新焦点,当存储能力不再重要时,运算能力正在成为未来企业全新的追逐对象。
此次百度云发布的"天算"正是应对这一需求,百度自身就是依靠运算能力起家,搜索从一开始就需要对大量的数据进行运算,其日均响应搜索超过60亿次,覆盖全国975%网民,LBS日请求超过300亿次,日语音识别请求超过1亿次,这些数据让百度的运算能力得到了强大的训练,不断倒逼自身能力。
此次“天算”开放则是将这16年的积累与全社会进行分享,使得每个行业都能够最高效解决大数据利用问题。
二,用户交互方式开始多元,企业难以应对
早期的pc时代,受制于 *** 作设备的不方便,用户与机器的交互方式只是通过文字进行,但是移动时代的智能手机带来了巨大的便携性,用户的请求方式开始多远,请求、语音请求、视频请求等等诸多形式。
企业只有抓住这些全新的交互形式,才等于抓住了未来,因此需要人工智能技术来应对用户场景的变化,帮助自己的用户更方便高效的使用自身产品,无论用户的语音请求还是请求都能够正确响应,但实际上该领域入门门槛极高,绝大多数公司都不可能单独设立部门进行研发,因此提供的人工智能服务的第三方成为关键。
面对以上全新的用户交互场景,百度云发布了"天像",天象功能可以为开发者提供视频、、文档等多媒体处理、存储、分发的云服务,同时还额外提供"反黄服务"、"视觉特效"、"人脸识别"、"文字识别"等等服务,此外百度生态还对"天像"进行巨大的流量扶持让企业获得巨大的流量曝光。
对应变化的用户场景,一直都是百度长期以来布局的焦点,以语音识别和识别为例,百度在语音识别方面其准确率高达97%,而其DeepSpeech2深度语音学习也被《麻省理工评论》评为十大突破性技术,与航天技术、生物技术并列,也是唯一一家入选的中国公司。在识别方面,百度的DeepImage可以对内容进行识别,LWF人脸识别精度达到9986%,文字OCR的准确率也在90%。
目前百度也已经全面开放了语音、的技术,开发者除了可以接入“天像”之外,还可以直接利用百度的语音识别、图像识别开放平台轻而易举的完成自身无法完成的高门槛技术实现。
三,物联网崛起,云计算向人工智能全面进化
继德国工业40之后,我国也在2014年提出了中国制造2025计划,智能工程也被正式抬上议题,在2025年重点制造业将全面实现智能化,实现统一的智能管理。
物联网的云计算与其他云计算不同,其重点不在于存储和托管,其需要一个标准化的管理规则,让设备能够统一的接入,统一的调度,统一的检测等等,而这一切又都依托于人工智能技术,也就是说在物联网的云计算方面,传统的云计算已经无法继续胜任,其不仅需要与人工智能结合,更需要将自身进化成人工智能。
百度云此次发布的“天工”,则正是应对未来的物联网时代的全面布局,而百度自身在物联网方面也有相当大的动作,无人车可以说是整个物联网的集大成者,涉及多方面的顶级软硬件技术,而百度则是将无人车列为自己的重点。
百度一开始就以无人车最高级的全自动驾驶作为标准,采用全球最先进的传感器等设备,并配合自身前沿的语音技术、图像识别技术、地图技术、深度学习技术来实现无人车的运作,并且在政府方面也获得了极大的支持,分别获得了中国芜湖地以及美国加州的试点允许,不仅是亚洲第一家做无人车的公司,也是唯一一家获得两国政府认可的公司。
无人车是顶级前沿人工智能技术的综合集成,而“天工”则是将这些前人工智能沿技术进行开放,让更多的物联网开发者能够获得低成本高效率的解决方案,目前“天工”已经有了登云、互道信息、普奥云、智向科技、物联天下等物联网公司的合作案例,而在此后也将吸引越来越多顶级的开发者。
结语:
未来是数据的时代、用户多种请求的时代、物联网设备的时代,传统的托管云计算将无法胜任,而云计算也将全面向人工智能进化,未来没有云计算只有人工智能,而这种趋势已经开始。
人工智能技术无论是在核心技术,还是典型应用上都已出现爆发式的进展。随着平台、算法、交互方式的不断更新和突破,人工智能技术的发展将主要以“AI+X”(为某一具体产业或行业)的形态得以呈现。所有这些智能系统的出现,并不意味着对应行业或职业的消亡,而仅仅意味着职业模式的部分改变。任何有助于让机器(尤其是计算机)模拟、延伸和扩展人类智能的理论、方法和技术,都可视为人工智能的范畴,展现出无比光明的发展前景。在我们生活方面,协助人类完成此前被认为必须由人完成的智能任务。人们将不仅生活在真实的物理空间,同样生活在网络空间。网络空间中的每个个体既有可能是人,也有可能是一个人工智能。在生产方面,未来人工智能有望在传统农业转型中发挥重要作用。例如,通过遥感卫星、无人机等监测我国耕地的宏观和微观情况,由人工智能自动决定(或向管理员推荐)最合适的种植方案,并综合调度各类农用机械、设备完成方案的执行,从而最大限度解放农业生产力。在制造业中,人工智能将可以协助设计人员完成产品的设计,在理想情况下,可以很大程度上弥补中高端设计人员短缺的现状,从而大大提高制造业的产品设计能力。同时,通过挖掘、学习大量的生产和供应链数据,人工智能还可望推动资源的优化配置,提升企业效率。在理想情况下,企业里人工智能将从产品设计、原材料购买方案、原材料分配、生产制造、用户反馈数据采集与分析等方面为企业提供全流程支持,推动我国制造业转型和升级。在生活服务方面,人工智能同样有望在教育、医疗、金融、出行、物流等领域发挥巨大作用。例如,医疗方面,可协助医务人员完成患者病情的初步筛查与分诊;医疗数据智能分析或智能的医疗影像处理技术可帮助医生制定治疗方案,并通过可穿戴式设备等传感器实时了解患者各项身体指征,观察治疗效果。在教育方面,一个教育类人工智能系统可以承担知识性教育的任务,从而使教师能将精力更多地集中于对学生系统思维能力、创新实践能力的培养。对金融而言,人工智能将能协助银行建立更全面的征信和审核制度,从全局角度监测金融系统状态,抑制各类金融欺诈行为,同时为贷款等金融业务提供科学依据,为维护机构与个人的金融安全提供保障。在出行方面,无人驾驶(或自动驾驶)已经取得了相当进展。在物流方面,物流机器人已可以很大程度替代手工分拣,而仓储选址和管理、配送路线规划、用户需求分析等也将(或已经)走向智能化。平台、算法以及接口等核心技术的突破,将进一步推动人工智能实现跨越式发展。从核心技术的角度来看,三个层次的突破将有望进一步推动人工智能的发展,分别为平台(承载人工智能的物理设备、系统)、算法(人工智能的行为模式)以及接口(人工智能与外界的交互方式)。在平台层面实现一个能服务于不同企业、不同需求的智能平台,将是未来技术发展的一大趋势。算法决定了人工智能的行为模式,一个人工智能系统即使有当前最先进的计算平台作为支撑,若没有配备有效的算法,只会像一个四肢发达而头脑简单的人,并不能算真正具有智能。面向典型智能任务的算法设计,从人工智能这一概念诞生时起就是该领域的核心内容之一。令算法通过自身的演化,自动适应这个“唯一不变的就是变化”的物理世界这也许是“人工”智能迈向“类人”智能的关键。接口(人工智能与外界的交互方式)、沟通是人类的一种基本行为,人工智能与人类的分界正变得模糊,一个中文聊天机器人也许比一位外国友人让我们觉得更容易沟通。因此,如何实现人机的高效沟通与协同将具有重要意义。语音识别、自然语言理解是实现人机交互的关键技术之一。另外,不采用自然语言,而是直接通过脑电波与机器实现沟通,即脑机接口技术,也已有相当进展,目前已经大体可以实现用脑电波直接控制外部设备(如计算机、机器手等)进行简单的任务。欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)