
可以利用电阻计算公式计算:R=ρL/S。
电阻(Resistance,通常用“R”表示)在物理学中表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。而超导体则没有电阻。
扩展资料:
电阻由导体两端的电压U与通过导体的电流I的比值来定义,即R=U/I。所以,当导体两端的电压一定时,电阻愈大,通过的电流就愈小;
反之,电阻愈小,通过的电流就愈大。
电阻的大小可以用来衡量导体对电流阻碍作用的强弱,即导电性能的好坏。电阻的量值与导体的材料、形状、体积以及周围环境等因素有关。
不同导体的电阻按其性质的不同还可分为两种类型。一类称为线性电阻或欧姆电阻,满足欧姆定律; 另一类称为非线性电阻,不满足欧姆定律。
-电阻
对于4色环电阻,其阻值计算方法位:阻值=(第1色环数值10+第2色环数值)第3位色环代表之所乘数
对于5色环电阻,其阻值计算方法位:阻值=(第1色环数值100+第2色环数值10+第3位色环数值)第4位色环代表之所乘数
1、颜色代表阻值的意义:黑-0、棕-1、红-2、橙-3、黄-4、绿-5、蓝-6、紫-7、灰-8、白-9
2、颜色代表乘数的意义:黑-1、棕-10、红-100、橙-1000、黄-10000、绿-100000、蓝-1000000、紫-10000000、灰-100000000、白-1000000000、金-01、银-001
3、四色环电阻颜色代表误差的意义:金-±5%、银-±10%
4、五色环电阻颜色代表误差的意义:棕-±1%、红-±2%、绿-±05%、蓝-±025%、紫-±010%、灰-±005%
电阻上面用了四道色环或者五道色环或者六道色环来表示电阻值 。可以从任意角度一次性的读取代表电阻值的颜色信息。
色环电阻是应用于各种电子设备的最多的电阻类型,无论怎样安装,维修者都能方便的读出其阻值,便于检测和更换。
扩展资料:
棕色环既常用做误差环,且常常在第一环和最末一环中同时出现,使人很难识别谁是第一环。在实践中,可以按照色环之间的间隔加以判别:比如对于一个五道色环的电阻而言,第五环和第四环之间的间隔比第一环和第二环之间的间隔要宽一些,据此可判定色环的排列顺序。
从电阻的底端,找出代表公差精度的色环,金色的代表5%,银色的代表10%。上例中,最末端色环为金色,故误差率为5%。再从电阻的另一端,找出第一条、第二条色环,读取其相对应的数字,上例中,前三条色环都为红红黑,故其对应数字为红2、红2、黑0,其有效数是220。
再读取第四条倍数色环,棕1。所以,我们得到的阻值是220×10^1=22KΩ。即阻值在2090-2310之间都是好的电阻。 如果第四条倍数色环为金色,则将有效数乘以01。如果第四条倍数色环为银色,则乘以001。
——色环电阻识别方法
1、第一代电子管计算机(1945-1956),采用电子管作为基础原件和磁鼓储存数据。特点是体型庞大,其中第一台电子管计算机(ENIAC)占地170平方米,重30吨,有18万个电子管,用十进制计算,每秒运算500次。
2、第二代晶体管计算机(1956-1963),与第一代的区别在于基础元件由电子管变味了晶体管,同时存储原件也由磁鼓变成了磁芯存储器。这样计算机的体积有了一次明显的瘦身,同时运算速度有了很大提升,能耗也有了降低。
3、第三代集成电路计算机(1964-1971),随着1958年集成电路被发明(将三种电子元件结合到一片小小的硅片上),到1964年,美国IBM公司研制成功第一个采用集成电路的通用电子计算机系列IBM360系统。
宣告计算机进入第三代集成电路计算机时代,当然计算机体积变得更小,功耗更低,速度也更快。同时这一时期的发展还包括使用了 *** 作系统,使得计算机在中心程序的控制协调下可以同时运行许多不同的程序。
4、第四代大规模集成电路计算机(1971-现在),这一代也就是现在使用的计算机,体积小,能耗相对较低,计算速度也得到了质的飞跃。
扩展资料
随着科技的进步,各种计算机技术、网络技术的飞速发展,计算机的发展已经进入了一个快速而又崭新的时代,计算机已经从功能单一、体积较大发展到了功能复杂、体积微小、资源网络化等。计算机的未来充满了变数,性能的大幅度提高是不可置疑的,而实现性能的飞跃却有多种途径。不过性能的大幅提升并不是计算机发展的唯一路线,计算机的发展还应当变得越来越人性化,同时也要注重环保等等。
计算机从出现至今,经历了机器语言、程序语言、简单 *** 作系统和Linux、Macos、BSD、Windows等现代 *** 作系统四代,运行速度也得到了极大的提升,第四代计算机的运算速度已经达到几十亿次每秒。计算机也由原来的仅供军事科研使用发展到人人拥有,计算机强大的应用功能,产生了巨大的市场需要,未来计算机性能应向着微型化、网络化、智能化和巨型化的方向发展。
参考资料:
这是SMT电阻的另外一种表示方法,也就是代字法,
你的电阻应该是E96系列,1%的电阻,
32在表格中是210,B是10^1,所以算起来是21010=21K
表格要的话,看我的空间
1、定义式:R=U/I。(U表示电压,I表示电流)。
2、定义公式:R=ρL/S。(ρ表示电阻的电阻率,是由其本身性质决定,L表示电阻的长度,S表示电阻的横截面积)。
3、电阻串联:R=R1+R2+R3++Rn。(R1Rn表示n个电阻,电阻值是由其本身性质决定)。
4、电阻并联:1/R=1/R1+1/R2+1/R3++1/Rn。(R1Rn表示n个电阻,电阻值是由其本身性质决定)。
5、与电功率相关公式:R=U²/P;R=P/I²。(U表示电压,I表示电流,P表示电功率)。
6、与电能(电热)相关公式:R=U²t/W;R=W/I²t。(U表示电压,I表示电流,t表示时间,W表示电热)。
扩展资料:
电阻元件的电阻值影响因素:
1、长度:当材料和横截面积相同时,导体的长度越长,电阻越大。
2、横截面积:当材料和长度相同时,导体的横截面积越小,电阻越大。
3、材料:当长度和横截面积相同时,不同材料的导体电阻不同。
4、温度:对大多数导体来说,温度越高,电阻越大,如金属等;对少数导体来说,温度越高,电阻越小,如碳。
b值是热敏电阻器的材料常数,即热敏电阻器的芯片(一种半导体陶瓷)在经过高温烧结后,形成具有一定电阻率的材料,每种配方和烧结温度下只有一个b值,所以种之为材料常数。
b值可以通过测量在25摄氏度和50摄氏度或85摄氏度)时的电阻值后进行计算。b值与产品电阻温度系数正相关,也就是说b值越大,其电阻温度系数也就越大。
b=t25×t85×ln(r25/r50)/(85-25)
温度系数就是指温度每升高1度,电阻值的变化率。采用以下公式可以将b值换算成电阻温度系数:
电阻温度系数=b值/t^2
(t为要换算的点绝对温度值)
ntc热敏电阻器的b值一般在2000k-6000k之间,不能简单地说b值是越大越好还是越小越好,要看你用在什么地方。一般来说,作为温度测量、温度补偿以及抑制浪涌电阻用的产品,同样条件下是b值大点好。因为随着温度的变化,b值大的产品其电阻值变化更大,也就是说更灵敏。
以上就是按我自己的理解所做的回答,我是做这个的,如果你还有什么问题,可以加我为好友,或给我发送信息。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)