
直接运行 cuda_10.1.105_418.39_linux.run ,然后按照要求一步步 *** 作就可以了。这里需要注意的是,因为已经安装了其他版本的cuda和驱动。所以,在安装的时候,不需要安装驱动。
其实,这里最主要想说的是cudnn的安装,安装的过程碰到了一点问题。刚开始,按照以前的方法,直接执行命令:
看命令的第一行,直接把cudnn.h复制到cuda-10.1的安装目录下。问题就出在这里,复制之后执行命令 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 查看cudnn版本,结果发现没任何输出。
找到cudnn.h这个文件,发现文件的内容和较早cuDNN v7.0.5版本少了很多内容。于是,找到官方安装文档 https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-803/install-guide/index.html 。官方文档给出的命令为:
注意到,第一行命令和以前不一样,然后进到文件夹仔细查看这些cudnn*.h这些文件。发现官方只是把以前的cudnn.h的内容拆分到了多个文件中。这里只需要按照官方的指令重新复制就可以了。
还有一点需要注意,cudnn的版本信息被放到了cudnn_version.h文件中,所以,这里想要查看cudnn的版本信息,应该使用指令 cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 。
PS:安装软件还是要先看官方文档,以官方文档为准,避免安装的时候出现问题。
可以看到这里有3个版本的cuda,我们只需要在/usr/local目录下新建一个软链接cuda,直接让cuda指向某一个版本的cuda文件夹就可以了。比如,这里我们使用最新的10.1版本: sudo ln -s /usr/local/cuda-10.1 /usr/local/cuda 。以后,如果想切换其他版本的cuda,只需要修改软链接的指向。
最后,将/usr/local/cuda写入到环境变量。通过vi ~/.bashrc打开文件,然后将以下命令加入到文件末尾:
然后source一下,使其立即生效: source ~/.bashrc 。
安装之后配置环境变量的步骤如下:
1,点“我的电脑”,右键选“属性”
2,选择:高级系统设置
3,选择:环境变量
4,在“系统变量”中选中“Path”
5,点“编辑”-再点“编辑文本”
6,在“变量值”一栏,把自己所安装的python路径拷进去就可以了,我安装的路径是“C:\Python27”。
7,完成之后,一路点击确定关闭,就可以了。
8,这里要强调一下,现在下载的python都自带pip,pip在python目录下的Scripts目录下,添加到系统的path路径中就可以使用了。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)