
用户画像,又称人群画像,是根据客户人口统计学信息,社交关系,偏好习惯和消费行为等信息而抽象出来的标签化画像。
构建客户画像的核心工作即是给客户贴“标签”(犹如娱乐圈中明星的立人设)
标签由两部分组成:
1、根据客户的行为数据直接得到的
比如:用户在网站或者APP上主动填写的数据,严格一些平台会要求客户上传身份z、学生证、驾驶证等,这样的数据准确性较高。
2、通过一系列算法或规则挖掘得到
比如:一个用户最近开始购买母婴类商品,奶粉尿布等,那么可以根据客户购买的频次和数量,结合客户的年龄、性别推断是否为新妈妈/爸爸。
用户画像其实就是希望通过某些手段对用户做甄别,把他们分成彼此相同或不同的人群或个体,进而区别化提供服务进行观察分析。
用户画像的价值
1、精准营销
精准营销是用户画像或者标签最直接和有价值的应用。这部分也是广告部门最注重的工作内容。当我们给各个用户打上各种“标签”之后,广告主(店铺、商家)就可以通过标签圈定他们想要的客户,进行精准的广告投放。
2、助力产品
一个产品想要得到广泛的应用,受众分析必不可少。产品经理需要懂用户,所以用户画像能帮助产品经理透过客户行为表象看到客户深层的动机和心理。
3、行业报告
通过对客户画像的分析可以了解行业动态,比如90后人群的消费偏好趋势分析、高端客户青睐品牌分析、不同地域品类消费差异分析等等。
讲了这么多“干货”大家是不是有点蒙圈了呢...下面我们看个简单的案例来帮助大家更好地理解。
场景案例
现有一份200多用户对十部电影的豆瓣评分数据,我们根据这些数据来刻画几组用户画像。
十部电影分别如下:
动作类:谍影重重5、湄公河行动、血战钢锯岭、伦敦沦陷;
青春爱情类:北京遇上西雅图、七月与安生、六弄咖啡馆;
动画类:疯狂动物城、功夫熊猫3、大鱼海棠。
下面就开始进行用户细分及刻画:
1、用户细分
(评分大于等于7定义为“喜爱此类电影”)
三种类型观众在数量上相差不多,说明人的品位爱好各不相同,比较平均。
2、对比刻画动作片与爱情片用户画像
(1)性别比例
跟预想一样,果然喜欢青春爱情片女生偏多,女生感情比较细腻,多愁善感,如《情遇曼哈顿》上映时可以精准地推荐给这类女生;动作片确实是男生占多数,男生喜欢动作、场面效果炫酷的电影,能够激起他们的“英雄情怀”,如《雷神3》上映时可以推荐~
(2)是否单身
各位单身朋友们,是不是男人看了会沉默,女人看了会流泪啊!结合上面的数据,我们是不是可以在对单身男青年们推荐时文案可以写上“多去看几部爱情片啊,说不定就会遇见你的未来女友”之类的话。
(3)社交偏好
这里用对电影的评论数量来划分偏好程度的,大于等于25条评论都属于偏好社交,对于这部分人可以进行重点营销,他们可以为电影带来二次推广的效果。
(4)品牌偏好
苹果虽贵但还是受到大部分人的认可,我们对于使用苹果的用户是不是可以大胆推测他们具有一定的消费能力,可以推荐一些高档影院或者3D巨幕电影。
(5)岗位分布
在女生偏多的喜爱爱情片的人中果然也是护士、老师等女性职业偏多;反观男生偏多的喜爱动作片人群里IT、工程师等占到大部分,但是最明显的还是学生党队伍,学生还是空余时间较多,所以电影宣传人员可以多在各大高校进行推广,召开见面会等。
(6)地域分布
可以看出一些大城市的人们在忙碌的工作之余都喜欢用看电影来放松心情,娱乐一下,电影方工作人员是不是可以在大城市多排一些片场,来促进票房增长。
从上面简单的案例我们就可以看出用户画像使产品的服务对象更加聚焦,更加专注,能更好的满足客户的需求,实现精准营销,并提升公司的经营效益。
什么是用户画像?
用户画像分为个人用户画像和用户群画像。个人用户画像可以理解为产品用户的所有相关数据。用户群画像可以理解为将所有个人画像通过不同标识(用户属性、用户角色、应用场景、用户行为、生命周期以及产品的特征)进行划分(分层、分组、分群)。
每个产品定义的用户画像基本都不一样,即便是同类产品,对用户画像的定义也可能不一样;用户画像的呈现和定义是产品经理对产品、对用户、对场景、对生命周期以及对行业的理解等综合因素的转化和抽取。
如何对用户进行划分?
就是为用户贴上标签。用户的属性、用户角色、应用场景、用户行为、生命周期以及产品的特征等都可以是明显标识或者根据产品情况定义的特征标识。产品经理根据这些标识进行组合、筛选出用户,以快速对这些用户群进行统计、分析、应用和运营,并为产品经理提供决策依据。
用户画像属性示例
以物联网智能家居用户为示例简单介绍(假设用户家庭的电子设备全部为智能设备,而使用智能设备的用户就是我们的用户):
用户属性:用户终端账号(App或其他智能设备账号)、名称、性别、年龄、用户所属家庭角色
房屋属性:房屋位置、房间数量、各房间名称、各房间设备数量
智能设备:设备ID、设备名称、设备分类、图片、联网方式、设备激活时间、设备活跃时间、设备明细参数、设备日志
应用场景:回家(设置时间回家后自动开空调)、离家(自动关闭所有灯关、空调、部分插座)、日出(早晨窗帘自动打开)、日落(窗帘自动关闭)
用户行为:什么时间通过什么方式什么原因使用智能设备(晚上睡觉前语音控制关灯、夜起后夜起灯自动亮)
周期:不同设备生命周期、设备的使用周期、app的使用周期、设备的使用频率、app的使用频率
…
以上用户画像属性数据仅为简单示例,实际物联网智能家居用户画像的数据深度、广度、多维度非常复杂。
用户标签示例
位置:国家、省、市、区
性别:男、女
年龄段:5-18、19-25、26-30、30-40、40-50、50-60、60以上
家庭角色:父亲、母亲、女儿、儿子、孙子、孙女
房间数量:0-1、1-2、2-3、3-5
智能设备数量:0、1-2、3-5、6-10、10-20、20以上
智能设备活跃度:0、1-3天、4-10天、10天以上
App用户的活跃度:0、1-3天、4-10天、10天以上
智能设备分类:摄像机、电源开关、照明、家居安防、路由网关、厨房电器等
…
以上用户标签数据仅为简单示例,实际物联网智能家居用户标签的数据深度、广度、多维度非常复杂。
用户画像有什么作用?
1、 精准营销:邮件、短信、App消息推送、个性化广告、个性化推荐等,通过用户标签筛选出需要的用户画像进行精准运营。
2、 产品定位,用户画像可以围绕产品进行人群细分,确定产品的核心人群,从而有助于确定产品定位,优化产品的功能点
3、 战略决策:好的用户画像可以帮助企业进行市场洞察、预估市场规模,从而辅助制定阶段性目标,指导重大决策。
4、 数据价值:用户画像有助于建立数据资产,挖掘数据的价值,使数据分析更为精确,甚至可以进行数据交易,促进数据流通
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)