
与传统的桌面应用程序不同,Tomcat中的应用程序是一个WAR(Web Archive)文件。WAR是Sun提出的一种Web应用程序格式,与JAR类似,也是许多文件的一个压缩包。这个包中的文件按一定目录结构来组织:通常其根目录下包含有Html和Jsp文件或者包含这两种文件的目录,另外还会有一个WEB-INF目录,这个目录很重要。通常在WEB-INF目录下有一个webxml文件和一个classes目录,webxml是这个应用的配置文件,而classes目录下则包含编译好的Servlet类和Jsp或Servlet所依赖的其它类(如JavaBean)。通常这些所依赖的类也可以打包成JAR放到WEB-INF下的lib目录下,当然也可以放到系统的CLASSPATH中,但那样移植和管理起来不方便
在Tomcat中,应用程序的部署很简单,你只需将你的WAR放到Tomcat的webapp目录下,Tomcat会自动检测到这个文件,并将其解压。你在浏览器中访问这个应用的Jsp时,通常第一次会很慢,因为Tomcat要将Jsp转化为Servlet文件,然后编译。编译以后,访问将会很快。另外Tomcat也提供了一个应用:manager,访问这个应用需要用户名和密码,用户名和密码存储在一个xml文件中。通过这个应用,辅助于Ftp,你可以在远程通过Web部署和撤销应用。当然本地也可以。
Tomcat不仅仅是一个Servlet容器,它也具有传统的Web服务器的功能:处理Html页面。但是与Apache相比,它的处理静态Html的能力就不如Apache。我们可以将Tomcat和Apache集成到一块,让Apache处理静态Html,而Tomcat处理Jsp和Servlet。这种集成只需要修改一下Apache和Tomcat的配置文件即可。
基于Tomcat的开发其实主要是Jsp和Servlet的开发,开发Jsp和Servlet非常简单,你可以用普通的文本编辑器或者IDE,然后将其打包成WAR即可。我们这里要提到另外一个工具Ant,Ant也是Jakarta中的一个子项目,它所实现的功能类似于Unix中的make。你需要写一个buildxml文件,然后运行Ant就可以完成xml文件中定义的工作,这个工具对于一个大的应用来说非常好,我们只需在xml中写很少的东西就可以将其编译并打包成WAR。事实上,在很多应用服务器的发布中都包含了Ant。另外,在Jsp12中,可以利用标签库实现Java代码与Html文件的分离,使Jsp的维护更方便。
GPON中的TCONT是建立在line-profile模板下的一个容器。
用于绑定DBA模板(动态带宽分配,即限定了最大的上行带宽)和GEM-port(用于承载业务),当GEM-port与vlan进行匹配之后(mapping)。
针对该vlan的业务流上行就由该TCONT绑定的DBA模板进行限定,同时下行就由全局建立的traffic模板限定。
从另外一个角度来说,可以定义一个TCONT对应一种业务类型,由于一个ONT只能由一个line-profile激活,而在line-profile下最多有0-7个TCONT索引号,故可以满足最多一个用户终端同时拥有8种不同的业务。
光猫gpon和epon的区别是什么?
EPON和GPON采用的标准不一样,可以说GPON更高级点,可以传输更大的带宽,可带的用户也比EPON更多。 GPON源自光纤通信早期的APON\BPON技术,由此发展过来,传输码流用的是ATM帧格式。
EPON的E指的是互联以太网,所以EPON诞生之初就是要求能够同互联网直接无缝衔接,所以EPON的码流走的是以太网的帧格式。当然,为了适应光纤上传输,所以在以太网帧格式的帧的外面,包了一层EPON定义的帧格式。
EPON的标准是IEEE的8023ah,IEEE制定EPON标准的基本原则是尽量在8023体系结构内进行EPON的标准化工作,最小程度地扩充标准以太网的MAC协议。
GPON的标准是ITU-TG984系列标准,GPON标准的制订考虑了对传统TDM业务的支持,继续采用125ms固定帧结构,以保持8K定时延续。
为了支持ATM等多协议,GPON定义了一种全新的封装结构GEM:GPONEncapsulaTIonMethod。可以把ATM和其他协议的数据混合封装成帧。
在应用上,GPON比EPON带宽更大,它的业务承载更高效、分光能力更强,可以传输更大带宽业务,实现更多用户接入,更注重多业务和QoS保证,但实现更复杂。
这样就是导致其成本相对EPON也较高,但随着GPON技术的大规模部署,GPON和EPON成本差异在逐步缩小。
EPON和GPON各有千秋,从性能指标上GPON要优于EPON,但是EPON拥有了时间和成本上的优势,GPON正在迎头赶上,展望未来的宽带接入市场也许并非谁替代谁,应该是共存互补。
对于带宽、多业务,QoS和安全性要求较高以及ATM技术作为骨干网的客户,GPON会更加适合。而对于成本敏感,QoS,安全性要求不高的客户群,EPON成为主导。
docker是一个开源的应用容器引擎。
让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。
众所周知,一个Java应用war包或者jar包启动成功,有能够对外提供服务的能力,能正常访问页面,做 *** 作,需要部署到一台有tomcat的linux环境中,没有容器技术前的上线流程通常出现这样的或那样的问题。
docker的架构
Docker使用客户端服务器架构模式,使用远程API来管理和创建Docker容器,Docker容器通过Docker镜像来创建。容器与镜像的关系类似于面向对象编程中的对象与类,Docker daemon一般在宿主主机后台运行,等待接收来自客户端的消息。Docker客户端则为用户提供一系列可执行命令,用户用这些命令实现跟Docker daemon交互。
Docker daemon作为服务端接受来自客户的请求,并处理这些请求创建、运行、分发容器。 客户端和服务端既可以运行在一个机器上,也可通过socket或者RESTfulAPI来进行通信。
容器技术是近几年云行业发展中不可缺少的一环。Docker和k8s的大热极大可能会推动云计算PAAS层的完善和普及。
容器(Container)是一种更轻量级,更灵活的虚拟化处理方式,它将一个应用程序所需的一切打包在一起。
容器包括所有代码,各种依赖甚至 *** 作系统,这让应用程序几乎在任何地方都可以运行。因此它的诞生,解决了一个重要问题:如何确保应用程序从一个环境移动到另一个环境的正确运行。它只是虚拟了 *** 作系统,而不像虚拟机一样去虚拟底层计算机。
Docker 容器是一个开源的应用容器引擎,让开发者可以以统一的方式打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何安装了docker引擎的服务器上(包括流行的Linux机器、windows机器),也可以实现虚拟化。
容器是完全使用沙箱机制,相互之间不会有任何接口(类似 iPhone 的 app)。几乎没有性能开销,可以很容易地在机器和数据中心中运行。最重要的是,他们不依赖于任何语言、框架包括系统。
定期渗透测试,安全审计;
尽量采用image的正规镜像来源,相对于传统安全,容器安全受质疑很大程度上是在于镜像的维护及升级,因此在镜像源头保证安全和及时更新;
及时升级容器服务,比如采用rollingupdate的方式对跑服务的容器进行升级等方式。
Docker容器与其他的容器技术都是大致类似的。但是,Docker在一个单一的容器内捆绑了关键的应用程序组件,这也就让这容器可以在不同平台和云计算之间实现便携性。其结果就是,Docker就成为了需要实现跨多个不同环境运行的应用程序的理想容器技术选择。
Docker还可以让使用微服务的应用程序得益,所谓微服务就是把应用程序分解成为专门开发的更小服务。 这些服务使用通用的RESTAPI来进行交互。使用完全封装Docker容器的开发人员可以针对采用微服务的应用程序开发出一个更为高效的分发模式。
1容器技术简介对于容器,它首先是一个相对独立的运行环境,在这一点有点类似于虚拟机,但是不像虚拟机那样彻底。在容器内,应该最小化其对外界的影响,比如不能在容器内把宿主机上的资源全部消耗,这就是资源控制。
2容器与虚拟机的区别
容器和虚拟机之间的主要区别在于虚拟化层的位置和 *** 作系统资源的使用方式。
1
1
容器与虚拟机拥有着类似的使命:对应用程序及其关联性进行隔离,从而构建起一套能够随处运行的自容纳单元。此外,容器与虚拟机还摆脱了对物理硬件的需求,允许我们更为高效地使用计算资源,从而提升能源效率与成本效益。
虚拟机会将虚拟硬件、内核(即 *** 作系统)以及用户空间打包在新虚拟机当中,虚拟机能够利用“虚拟机管理程序”运行在物理设备之上。虚拟机依赖于hypervisor,其通常被安装在“裸金属”系统硬件之上,这导致hypervisor在某些方面被认为是一种 *** 作系统。一旦 hypervisor安装完成, 就可以从系统可用计算资源当中分配虚拟机实例了,每台虚拟机都能够获得唯一的 *** 作系统和负载(应用程序)。简言之,虚拟机先需要虚拟一个物理环境,然后构建一个完整的 *** 作系统,再搭建一层Runtime,然后供应用程序运行。
对于容器环境来说,不需要安装主机 *** 作系统,直接将容器层(比如LXC或libcontainer)安装在主机 *** 作系统(通常是Linux变种)之上。在安装完容器层之后,就可以从系统可用计算资源当中分配容器实例了,并且企业应用可以被部署在容器当中。但是,每个容器化应用都会共享相同的 *** 作系统(单个主机 *** 作系统)。容器可以看成一个装好了一组特定应用的虚拟机,它直接利用了宿主机的内核,抽象层比虚拟机更少,更加轻量化,启动速度极快。
相比于虚拟机,容器拥有更高的资源使用效率,因为它并不需要为每个应用分配单独的 *** 作系统——实例规模更小、创建和迁移速度也更快。这意味相比于虚拟机,单个 *** 作系统能够承载更多的容器。云提供商十分热衷于容器技术,因为在相同的硬件设备当中,可以部署数量更多的容器实例。此外,容器易于迁移,但是只能被迁移到具有兼容 *** 作系统内核的其他服务器当中,这样就会给迁移选择带来限制。
因为容器不像虚拟机那样同样对内核或者虚拟硬件进行打包,所以每套容器都拥有自己的隔离化用户空间,从而使得多套容器能够运行在同一主机系统之上。我们可以看到全部 *** 作系统层级的架构都可实现跨容器共享,惟一需要独立构建的就是二进制文件与库。正因为如此,容器才拥有极为出色的轻量化特性。
对Docker稍有接触的人应该都见过下图,无需更多解释,Docker减少Guest OS这一层级,所以更轻量和更高性能。
docker虚拟机区别
3深层区别:
docker虚拟机区别
更新:Docker现在已经支持windows平台,所以上面的Windows支持一栏可以忽略。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)