蓝海大脑的深度学习液冷服务器有什么作用?

蓝海大脑的深度学习液冷服务器有什么作用?,第1张

之前我司在做冷冻电镜项目时,有了解过蓝海大脑的深度学习液冷服务器,总结下来具备低成本、高效率的竞争优势。其中,液冷高密度服务器在2U空间支持4个双路节点,能够长期稳定工作于高性能模式,对机房适应性提升⌄可适应客户机房较高温度和高海拔环境,解决高功率CPU散热问题;采用温水冷却方式和CPU+VR+DIMM液冷板,PUE可达到12以下,显著降低制冷成本,并支持可移动的风液交换式CDU方案部署便捷。被广泛用在企业数据中心、云计算、人工智能、边缘计算、生命科学、遥感测绘、冷冻电镜等领域。

针对人工智能的深度学习场景,思腾合力研发出深思AW4211-8GR服务器,具有高性能、高密度、可扩展性强的特点,支持双路AMD7002系列处理器,CPU直通设计,延迟降低至少150ms,同时节省PCIE Switch成本,可广泛应用于AI、深度学习场景,也可作为GPU计算集群高密度、高性能的节点平台。想了解更多可以百度一下

不一定,深度学习可以在本地计算机上运行,也可以在服务器上运行。但是,通常情况下,深度学习需要处理大量的数据和复杂的计算,因此需要比普通计算机更高效的硬件和更大的存储空间。因此,一些公司和组织通常会使用高性能计算机(HPC)或云计算平台来运行深度学习任务。
在本地运行深度学习任务的主要优点是可以对计算机进行更好的控制,可以使用自己的硬件和软件。此外,本地计算机可以更好地保护数据的隐私和安全性。但是,本地计算机的计算能力和存储空间通常受限,因此可能无法满足大规模深度学习任务的需求。
使用服务器或云计算平台运行深度学习任务的主要优点是可以获得更高的计算能力和更大的存储空间。此外,使用云计算平台可以根据需要调整计算资源的规模,从而更好地应对不同规模的深度学习任务。但是,使用云计算平台需要支付相应的费用,并且需要注意数据隐私和安全性的保护。

深度学习是需要配置专门的GPU服务器的:

深度学习的电脑配置要求:

1、数据存储要求

在一些深度学习案例中,数据存储会成为明显的瓶颈。做深度学习首先需要一个好的存储系统,将历史资料保存起来。

主要任务:历史数据存储,如:文字、图像、声音、视频、数据库等。

数据容量:提供足够高的存储能力。

读写带宽:多硬盘并行读写架构提高数据读写带宽。

接口:高带宽,同时延迟低。

传统解决方式:专门的存储服务器,借助万兆端口访问。

缺点:带宽不高,对深度学习的数据读取过程时间长(延迟大,两台机器之间数据交换),成本还巨高。

2、CPU要求

当你在GPU上跑深度网络时,CPU进行的计算很少,但是CPU仍然需要处理以下事情:

(1)数据从存储系统调入到内存的解压计算。

(2)GPU计算前的数据预处理。

(3)在代码中写入并读取变量,执行指令如函数调用,创建小批量数据,启动到GPU的数据传输。

(4)GPU多卡并行计算前,每个核负责一块卡的所需要的数据并行切分处理和控制。

(5)增值几个变量、评估几个布尔表达式、在GPU或在编程里面调用几个函数——所有这些会取决于CPU核的频率,此时唯有提升CPU频率。

传统解决方式:CPU规格很随意,核数和频率没有任何要求。

3、GPU要求

如果你正在构建或升级你的深度学习系统,你最关心的应该也是GPU。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大。

主要任务:承担深度学习的数据建模计算、运行复杂算法。

传统架构:提供1~8块GPU。

4、内存要求

至少要和你的GPU显存存大小相同的内存。当然你也能用更小的内存工作,但是,你或许需要一步步转移数据。总而言之,如果钱够而且需要做很多预处理,就不必在内存瓶颈上兜转,浪费时间。

主要任务:存放预处理的数据,待GPU读取处理,中间结果存放。

深度学习需要强大的电脑算力,因此对电脑的硬件配置自然是超高的,那么现在普通的高算力电脑需要高配置硬件。

实事求是的说,蓝海大脑的深度学习边缘计算服务器不错,除了夏天有点热。他们的服务器功耗低,性能可靠,最重要的是可以用于深度学习、自动驾驶、人脸检测、机器识别、视觉识别、行为识别等领域。

最近在学习机器学习,看到了深度学习这一部分。用tensorflow写了几个例子,CNN的,然后在我的15年版的MacbookPro上跑了跑了,训练速度真是不忍直视,而且,风扇呼呼转,真是心疼我这个Mac了。于是意识到显卡这个东西真是个门槛。因此才想着搞一台高配置的主机来跑深度网络。

既然是跑深度学习,那么直接在电商网站上搜一下深度学习主机买来不就得了? 理论总是那么简单。。。
事实上,我看了下专门跑深度学习的主机,基本都是服务器级别的,动辄2W+ 。我是没这么多银子来投入这个的,没办法,穷人啊。

那么,想一下自己需求,找一个合适的主机吧。我的目的也很简单的:

好了, 这么一罗列就明确了,就是一个高配游戏主机喽。不要误会,这是巧合~~ 于是 我去闲鱼上瞅了瞅,看出点门道,一般i7 8700 + 1080Ti显卡的主机,就可以卖到1W了~~ 啧啧 游戏真是败家。

一开始我也想着直接买个这种主机,省事儿,不过既然都花到1W了,对各个配置外观就很在意了。看了很多主机,感觉都不是理想中的样子,要么机箱丑, 要么主板渣,要么硬盘和内存规格不够。其实我主要在意的是CPU和显卡,只要这两个满足就OK啊,然后就可以慢慢攒出自己想要的主机了。我看了闲鱼上的价格,i7 8代CPU的价格,代购的话也就2500左右,为了以后升级考虑,直接上了i7 8086K(这是个intel为了纪念第一代8086芯片40周年的纪念品,其实是从8700K中挑出来的体质好的片),4GHZ,高主频,干事儿快。1080Ti的显卡是最具性价比的了,二手价格4K左右,不过容易踩到雷买到挖矿的卡~ 这个小心了。

总的来说,各个配件都准备妥当了,来一下清单:

总计: 9800吧~(真贵)~ 总的来说,必直接先闲鱼上的主机要好一些,多了可配置性。

这个就不展开了,按照说明书一步步来就好。主要是安装顺序以及接线。
安装顺序:电源装到机箱 -> CPU装到主板 -> 主板装到机箱 -> 水冷 散热风扇 -> 接线
这里有两个地方需要注意:

最后上个成品图 啊哈哈~

这么好的显卡不玩玩游戏是不是亏了?? 那就保留一个win系统吧~

现在网上的双系统如何安装帖子都是老教程了~ Ubuntu都发布了1804,支持UEFI+GPT。那么如何搞呢?

首先,先安装win10,如果是自己制作U盘启动项,务必选择UEFI+GPT组合模式,也就是做用UEFI模式引导,硬盘为GPT格式。如果不是,那么需要检查一下并完成转换,这里有个教程,直接用win10自带的工具就能做到,但是前提是win10升级到1703之后的版本。

用Win10自带的MBR2GPT无损转换GPT磁盘分区形式

然后就是安装Ubuntu1804了。我是安装在一个磁盘里,因此需要先空出一定大小的未分配空间。然后制作Ubuntu1804的U盘启动项,选择UEFI+GPT组合模式。这里是官方教程:

win系统上制作Ubuntu的U盘启动

然后按照这个教程就好了: Windows10+Ubuntu1804双系统安装

安装好Ubuntu1804之后登录进去发现系统变漂亮了(但是还是一贯的难用,相比Mac和win)。可以进行一些美化 *** 作。。 好像很多人喜欢这个,贴个教程吧: Linux也可以这样美——Ubuntu1804安装、配置、美化-踩坑记

之后就是配置我们的深度学习环境了。目前我主要用tensorflow,只记录这个。

主要步骤:

好了,可以从GitHub上下点example跑起来了,CNN的计算有了1080TI的加持还是很快的,开心~~

需要配置远程访问,jupyter notebook服务。远程Pycharm调试环境。
这里有个麻烦,就是家里是局域网,而且接的是长城渣宽带,没有独立IP,需要用frp中转一下。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/zz/13013709.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-29
下一篇2025-08-29

发表评论

登录后才能评论

评论列表(0条)

    保存