
既然是跑深度学习,那么直接在电商网站上搜一下深度学习主机买来不就得了? 理论总是那么简单。。。
事实上,我看了下专门跑深度学习的主机,基本都是服务器级别的,动辄2W+ 。我是没这么多银子来投入这个的,没办法,穷人啊。
那么,想一下自己需求,找一个合适的主机吧。我的目的也很简单的:
好了, 这么一罗列就明确了,就是一个高配游戏主机喽。不要误会,这是巧合~~ 于是 我去闲鱼上瞅了瞅,看出点门道,一般i7 8700 + 1080Ti显卡的主机,就可以卖到1W了~~ 啧啧 游戏真是败家。
一开始我也想着直接买个这种主机,省事儿,不过既然都花到1W了,对各个配置外观就很在意了。看了很多主机,感觉都不是理想中的样子,要么机箱丑, 要么主板渣,要么硬盘和内存规格不够。其实我主要在意的是CPU和显卡,只要这两个满足就OK啊,然后就可以慢慢攒出自己想要的主机了。我看了闲鱼上的价格,i7 8代CPU的价格,代购的话也就2500左右,为了以后升级考虑,直接上了i7 8086K(这是个intel为了纪念第一代8086芯片40周年的纪念品,其实是从8700K中挑出来的体质好的片),4GHZ,高主频,干事儿快。1080Ti的显卡是最具性价比的了,二手价格4K左右,不过容易踩到雷买到挖矿的卡~ 这个小心了。
总的来说,各个配件都准备妥当了,来一下清单:
总计: 9800吧~(真贵)~ 总的来说,必直接先闲鱼上的主机要好一些,多了可配置性。
这个就不展开了,按照说明书一步步来就好。主要是安装顺序以及接线。
安装顺序:电源装到机箱 -> CPU装到主板 -> 主板装到机箱 -> 水冷 散热风扇 -> 接线
这里有两个地方需要注意:
最后上个成品图 啊哈哈~
这么好的显卡不玩玩游戏是不是亏了?? 那就保留一个win系统吧~
现在网上的双系统如何安装帖子都是老教程了~ Ubuntu都发布了1804,支持UEFI+GPT。那么如何搞呢?
首先,先安装win10,如果是自己制作U盘启动项,务必选择UEFI+GPT组合模式,也就是做用UEFI模式引导,硬盘为GPT格式。如果不是,那么需要检查一下并完成转换,这里有个教程,直接用win10自带的工具就能做到,但是前提是win10升级到1703之后的版本。
用Win10自带的MBR2GPT无损转换GPT磁盘分区形式
然后就是安装Ubuntu1804了。我是安装在一个磁盘里,因此需要先空出一定大小的未分配空间。然后制作Ubuntu1804的U盘启动项,选择UEFI+GPT组合模式。这里是官方教程:
win系统上制作Ubuntu的U盘启动
然后按照这个教程就好了: Windows10+Ubuntu1804双系统安装
安装好Ubuntu1804之后登录进去发现系统变漂亮了(但是还是一贯的难用,相比Mac和win)。可以进行一些美化 *** 作。。 好像很多人喜欢这个,贴个教程吧: Linux也可以这样美——Ubuntu1804安装、配置、美化-踩坑记
之后就是配置我们的深度学习环境了。目前我主要用tensorflow,只记录这个。
主要步骤:
好了,可以从GitHub上下点example跑起来了,CNN的计算有了1080TI的加持还是很快的,开心~~
需要配置远程访问,jupyter notebook服务。远程Pycharm调试环境。
这里有个麻烦,就是家里是局域网,而且接的是长城渣宽带,没有独立IP,需要用frp中转一下。研究深度学习和神经网络大多都离不开GPU,在GPU的加持下,我们可以更快的获得模型训练的结果。深度学习和神经网络的每个计算任务都是独立于其他计算的,任何计算都不依赖于任何其他计算的结果,可以采用高度并行的的方式进行计算。而GPU相比于CPU拥有更多独立的大吞吐计算通道,较少的控制单元使其不会受到计算以外的更多任务的干扰,所以深度学习和神经网络模型在GPU的加持下会高效地完成计算任务。我们公司的GPU用的就是思腾合力家的,思腾合力深思系列产品就很适用于人工智能和深度学习训练等多领域GPU服务器,产品还挺好用
深度学习服务器/工作站,不能单独考虑硬件配置高低,以及预算多少,要根据使用者的类型,配置合理的硬件,硬件配置至少分为两个类型:
一、深度学习开发工作站/服务器
基本要求:
1)处理器:8核或以上
2)内存:64G内存或以上
3)GPU:1-4块GTX1080Ti,GTX Titan XP/V,Quadro GP100
4)系统硬盘:选用高速的SSD固态硬盘
二、深度学习训练工作站/服务器
基本要求:
1)处理器:8核或以上
2)内存:128G内存以上
3)GPU:4-10块Tesla系列GPU(K40,K80,P100,V100)
4)系统硬盘:选用高速的SSD固态硬盘组阵列(工作站:要求噪音小,适合办公室使用,服务器:要求密度高,噪音大,一般适用于机房)
RTX 2060(6 GB):你想在业余时间探索深度学习。RTX 2070或2080(8 GB):你在认真研究深度学习,但GPU预算不多。8 GB的VRAM适用于大多数模型。
RTX 2080 Ti(11 GB):你在认真研究深度学习并且您的GPU预算中等。RTX 2080 Ti比RTX 2080快大约40%。
Titan RTX和Quadro RTX 6000(24 GB):你正在广泛使用现代模型,但却没有足够买下RTX 8000的预算。
Quadro RTX 8000(48 GB):你要么是想投资未来,要么是在研究2020年最新最酷炫的模型。
现在都是选择呆猫会提供GPU服务器,普通电脑都可以轻松运行高算力的电脑服务。深度学习是作为机器学习的一个算法而存在,被称为人工神经网络,由于受到算法理论、数据、硬件的制约,多年以来一直都是单层或浅层的网络结构。随着大数据的发展,以及大规模硬件加速设备的出现,特别是GPU的不断提升,使得神经网络重新受到重视。深度学习的发展需要大数据跟计算力的支撑,蓝海大脑专注于人工智能领域,适用于GPU高性能计算、深度学习训练及推理等场景,覆盖服务器、静音工作站等多种产品形态,能够满足客户全场景需求,80%做人工智能科研等领域研究的重点高校已应用蓝海大脑的产品。珍岛GPU云服务器。
珍岛GPU云服务器适用于深度学习,针对AI,数据分析在各种规模上实现出色的加速,应对极其严峻的计算挑战,同时珍岛云提供多种GPU实例规格。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)