
网络时钟同步服务器 主要偏重于网络时钟同步功能并未描述时钟信号来源。
北斗时钟同步服务器 既描述了时钟信号来源是北斗系统,又说明了时钟同步功能。
网络时钟同步服务器和北斗时钟同步服务器除了时钟信号来源,基本功能差不多。
计算机网络系统推荐架设自己的时钟服务器,推荐京准电子科技 HR-901GB型
目前计算机网络中各主机和服务器等网络设备的时间基本处于无序的状态。随着计算机网络应用的不断涌现,计算机的时间同步问题成为愈来愈重要的事情。以Unix系统为例,时间的准确性几乎影响到所有的文件 *** 作。 如果一台机器时间不准确,例如在从时间超前的机器上建立一个文件,用ls查看一下,以当前时间减去所显示的文件修改时间会得一个负值,这一问题对于网络文件服务器是一场灾难,文件的可靠性将不复存在。为避免产生本机错误,可从网络上获取时间,这个命令就是rdate,这样系统时钟便可与公共源同步了。但是一旦这一公共时间源出现差错就将产生多米诺效应,与其同步的所有机器的时间因此全都错误。
网络时钟服务器
另外当涉及到网络上的安全设备时,同步问题就更为重要了。这些设备所生成的日志必须要反映出准确的时间。尤其是在处理繁忙数据的时候,如果时间不同步,几乎不可能将来自不同源的日志关联起来。 一旦日志文件不相关连,安全相关工具就会毫无用处。不同步的网络意味着企业不得不花费大量时间手动跟踪安全事件。现在让我们来看看如何才能同步网络,并使得安全日志能呈现出准确地时间。
中国内地就一台啊,国家授时中心(陕西天文台)本部地处我国中部腹地——陕西临潼,这里承担着我国标准时间的产生、保持任务,并采用多种手段与国际时间保持同步,同时这里拥有一支时频领域的科研队伍。授时台(授时信号发射)位于陕西蒲城,主要有短波和长波专用无线电标准时间标准频率发播台(代号分别为BPM和BPL)。国民党统治时期,所用的时间是由美国海军天文台牵头负责保障的。建国初期,我国的时间发布,则是由上海天文台租用邮电部真如国际电讯台向全国发布的。由于当时技术设备和上海在全国的地理位置不是很适中等因素,我国的时间发布效果不很理想。而此时,美、苏、日等发达国家都陆续建立了本国的标准时间标准频率授时系统。台湾国民党当局也依附美国建起了BFS标准时间标准频率授时台。
全世界就多了,这是战略性工程,很重要的。三十多年来,国家授时中心(陕西天文台)在时频技术研究领域获得重大科技成果奖130余项,为国家国防试验、空间技术、测绘、地震、交通、通信、气象、地质等诸多行业和部门提供了可靠的高精度授时服务。特别是在以卫星发射、火箭试验为代表的我国航天技术发展中做出了重大贡献。自系统建成后,为国家星箭发射、战略武器试验提供了准确可靠的时间频率信号,保证了百余次重大任务的顺利完成,多次受到国务院、中央军委、总装备部贺电嘉奖。
国家授时中心负责确定和保持的我国原子时系统TA(CSAO)和协调世界时UTC(CSAO)处于国际先进水平,并代表我国参加国际原子时合作。它是由一组高精度铯原子钟通过精密比对和计算实现,并通过GPS共视比对、卫星双向法(TWSTFT)比对等手段与国际原子时间标准相联系,对国际原子时的保持做出贡献,目前的稳定度为10-14,准确度为10-13。
短波授时台(BPM)每天24小时连续不断地以四种频率(25M,5M,10M,15M,同时保证3种频率)交替发播标准时间、标准频率信号,覆盖半径超过3000公里,授时精度为毫秒(千分之一秒)量级;长波授时台(BPL)每天定时发播载频为100KHz的高精度长波时频信号,地波作用距离1000-2000公里,天地波结合,覆盖全国陆地和近海海域,授时精度为微秒(百万分之一秒)量级。BPL长波授时系统的建立,将我国授时精度由毫秒量级提高至微秒量级,使我国授时技术迈入世界先进行列,该项目1988年荣获国家科技进步一等奖。
北斗卫星导航系统是是中国自行研制开发的区域性有源三维卫星定位与通信系统(CNSS),是除美国的全球定位系统(GPS)、俄罗斯的GLONASS之后第三个成熟的卫星导航系统。北斗卫星导航系统致力于向全球用户提供高质量的定位、导航和授时服务,其建设与发展则遵循开放性、自主性、兼容性、渐进性这4项原则。北斗卫星导航系统建设目标是建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统,促进卫星导航产业链形成,形成完善的国家卫星导航应用产业支撑、推广和保障体系,推动卫星导航在国民经济社会各行业的广泛应用。
“”北京北斗时间频率技术有限公司“”提供北斗授时服务!
北斗授时系统组成
空间部分包括两颗地球同步轨道卫星(GEO) 组成。卫星上带有信号转发装置,完成地面控制中心站和用户终端之间的双向无线电信号的中继任务。用户终端分为定位通信终端、集团用户管理站终端、差分终端、校时终端等。与GPS系统不同,所有用户终端位置的计算都是在地面控制中心站完成。因此,控制中心可以保留全部北斗终端用户机的位置及时间信息。同时,地面控制中心站还负责整个系统的监控管理。
与GPS、GLONASS、Galileo等国外的卫星导航系统相比,BD有自己的优点。如投资少,组建快;具有通信功能;捕获信号快等。但也存在着明显的不足和差距,如用户隐蔽性差;无测高和测速功能;用户数量受限制;用户的设备体积大、重量重、能耗大等。
北斗卫星导航系统”是由空间卫星、地面控制中心站和北斗用户终端三部分构成。
空间段由5颗地球静止轨道卫星和30颗非静止轨道卫星组成。地球静止轨道卫星分别位于东经5875度、80度、 110 5度、140度和160度。非静止轨道卫星由27颗中圆轨道(MEO)卫星和3颗倾斜同步轨道(IGSO)卫星组成。其中,ME0卫星轨道高度21500千米,位于3个轨道面上,轨道倾角55度; IGSO卫星轨道高度36000千米,位于3个轨道面上,轨道倾角55度。卫星均采用长征系列运载火箭发射。
地面段由主控站、注入站和若干监测站组成。主控站主要任务是收集各个监测站的观测数据,进行数据处理,生成卫星导航电文和差分完好性信息,完成任务规划与调度,实现系统运行管理与控制等。注入站主要任务是在主控站的统一调度下, 完成卫星导航电文、差分完好性信息注入和有效载荷的控制管理。监测站接收导航卫星信号,发送给主控站,实现对卫星的跟踪、监测,为卫星轨道确定和时间同步提供观测资料。
用户段由各类北斗用户终端组成。北斗用户机具有兼容GPS、GLONASS、GALILEO的功能。
工作体制
北斗卫星导航系统采用卫星无线电测定(RDSS) 与卫星无线电导航(RNSS )集成体制,既能像GPS、 CLONASS、 GALILEO系统一样,为用户提供卫星无线电导航服务,又具有位置报告及短报文通信功能。
北斗授时服务类型和性能指标
系统提供开放服务和接权服务,其中,开放服务面向全球范围,定位精度10米,授时精度20纳秒,测速精度02米/秒;授权服务包括全球范围更高性能的导航定定位服务,以及亚太地区的广域差分服务和短报文通信服务,其中,广域差分服务精度1米,短报文通信精度服务能力每次120个汉字。
系统在B1、B2和B3三个频段上发射三路开放服务导航信号、三路授权服务导航信号。B1是1559052MHz~ 1591 788MHz, B2是116622MHz~1217 37MHz,B3是1250618MHz~1286423MHz。
北斗授时系统与坐标系统
北斗卫星导航系统的系统时间称北斗时(BDT)。北斗时属原子时,起算历元时间是2006年1月1日0时0分0秒(UTC,协调世界时)。BDT溯源到我国协调世界时UTC(NTSC,国家授时中心),与UTC的时差控制准确度小于100ns。
NTP时间同步服务器 主要偏重于NTP时间同步功能
北斗时间同步服务器 主要偏重于北斗卫星时间来源
GPS时间服务器跟北斗时间同步服务器一样也偏重于时间来源是GPS卫星。
目前计算机网络中各主机和服务器等网络设备的时间基本处于无序的状态。随着计算机网络应用的不断涌现,计算机的时间同步问题成为愈来愈重要的事情。以Unix系统为例,时间的准确性几乎影响到所有的文件 *** 作。 如果一台机器时间不准确,例如在从时间超前的机器上建立一个文件,用ls查看一下,以当前时间减去所显示的文件修改时间会得一个负值,这一问题对于网络文件服务器是一场灾难,文件的可靠性将不复存在。为避免产生本机错误,可从网络上获取时间,这个命令就是rdate,这样系统时钟便可与公共源同步了。但是一旦这一公共时间源出现差错就将产生多米诺效应,与其同步的所有机器的时间因此全都错误。
另外当涉及到网络上的安全设备时,同步问题就更为重要了。这些设备所生成的日志必须要反映出准确的时间。尤其是在处理繁忙数据的时候,如果时间不同步,几乎不可能将来自不同源的日志关联起来。 一旦日志文件不相关连,安全相关工具就会毫无用处。不同步的网络意味着企业不得不花费大量时间手动跟踪安全事件。现在让我们来看看如何才能同步网络,并使得安全日志能呈现出准确地时间。
Internet的发展使得电子货币,网上购物,网上证券、金融交易成为可能,顾客可以坐在家里用个人电脑进行上述活动。要保证这些活动的正常进行就要有统一的时间。不能设想用户3点钟汇出一笔钱银行2点50分收到。个人电脑的时钟准确度很低,只有10-4、10-5,一天下来有可能差十几秒。
现在许多在线教学系统的许多功能都使用了时间记录,比如上网时间记录,递交作业时间和考试时间等等。通常在线教学系统记录的用户数据均以网站服务器时间为准。笔者以前就曾出现过因为应用服务器时间还在23点55分,而数据库服务器已跨过24点,导致正在进行的整个批处理日切或数据归档等重要处理失败或根本无法进行的情况,其实应用和数据库服务器时间也只是相差了几分钟而已。为了避免出现这种情况,系统管理员要经常关注服务器的时间,发现时间差距较大时可以手工调整,但由系统管理员手工调整既不准确、并且随着服务器数量的增加也会出现遗忘,因此有必要让系统自动完成同步多个服务器的时间。
上述问题的解决方法,就是需要一个能调整时钟抖动率,建立一个即时缓和、调整时间变化,并用一群受托服务器提供准确、稳定时间的时间管理协议,这就是网络时间协议(NTP)。如果你的局域网可以访问互联网,那么不必安装一台专门的NTP服务器,只需安装NTP的客户端软件到互联网上的公共NTP服务器自动修正时间即可,但是这样时间能同步但不精准还可能因为网络不稳定从而导致时间同步失败的结果,最佳方案则是在网络里安装一台属于自己的NTP服务器硬件设备,将各个计算机时间同步且统一起来,成本也不高即便高相对于大数据服务器来说孰轻孰重,作为网络工程师你更清楚。
总结:
随着网络规模、网上应用不断扩大,网络设备与服务器数量不断增加。网络管理员在查看众多网络设备日志时,往往发现时间不一,即使手工设置时间,也会出现因时区或夏令时等因素造成时间误差;有些二层交换机重启后,时钟会还原到初始值,需要重新设置时间。对于核心网络设备和重要应用服务器而言,它们之间有时需要协同工作,因此时间的准确可靠性显得尤为重要。
NTP服务的配置及使用都非常简单,并且占用的网络资料非常小。NTP时间服务器目前广泛应用于网络安全、在线教学、数据库备份等领域。企业采取措施同步网络和设备的时间非常重要,但确保安全设备所产生的日志能提供精确的时间更应当得到关注。
NTP时钟服务器和网络时间服务器确实没什么区别,只是叫法不一样, 北斗时频的网络时间服务器已在国内重要的职能部门及事业单位包括(几大省份的公安骨干网、交通监控网、国税局、地税局、政法委)投入应用,北斗时频设备在客户现场运行多年,几乎零故障、零售后,在业界获得了良好的口碑!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)