如何用python开发移动App后台?需要掌握哪些技术

如何用python开发移动App后台?需要掌握哪些技术,第1张

1、如果使用python语言,需要学习哪些知识?
python作为一门简单明了的语言,非常容易上手,语言层面不会太复杂,稍微有点难度的顶多就是装饰器、元类和少量函数式编程内容。要说学习的话,我觉得更多是一些编程方面通用的东西,比如:数据结构和算法、设计模式、 *** 作系统、计算机网络之类的
2、选择什么样的python框架开发,这个框架的优势?
tornado,因为非阻塞io的原因,性能非常高,特别适合写后端API(App的后端应该都是rest风格的api),而且成熟稳定
3、如何部署服务器?本地服务器调试,以及公网服务器部署?
这个一两句说不清楚,涉及到运维、测试、开发诸多方面, 部署和测试推荐几个包:fabric、nose、unittest(python自带),版本管理推荐git,持续集成推荐使用docker+jenkins
4、如果使用python框架开发移动后台服务,在开发源码内使用哪种框架?mvc还是其它的,比如我返回json数据,每次json对象最外层有一些相同的东西,该如何处理?
MVC什么的,一般的框架都差不多的,tornado也是支持的,返回json有相同的东西,写个修饰器就完了
5、python的后台服务最大能支持多大的pv量会严重影响用户体验性能?
youtube、reddit、豆瓣、知乎这样的大流量网站都是python写的,觉得你的App的规模不太可能遇到性能问题,即使有也应该不是python的问题,而是任何语言都会有问题。毕竟web后端不是计算密集型,而是io密集型的,python和其他语言的区别不会太大吧,大量的pv是可以靠堆服务器堆出来的,如果是计算量比较大的任务,你可以考虑用c或c++写
6、如何兼顾 网页前端以及移动端 开发的后台?
用python写的API,网页和移动端都是可以调用啊,让前端学学React,就可以轻松解决前后端分离这个问题(PS: facebook 就是后端php + 前端React,淘宝也有在用nodejs做前后端分离)
7、有没用相关的案例,即用python开发的移动后台?有没有该问题的开源项目?
这个应该比较少,App后端开源的不常见,而且大部分是rest风格的api,很多时候会涉及到自身的业务和敏感信息应该不会开源的吧(又不是bbs或者博客程序)

API网关 API Gateway)提供高性能、高可用的 API 托管服务,帮助用户对外开放其部署在 ECS、容器服务等阿里云产品上的应用,提供完整的 API 发布、管理、维护生命周期管理。用户只需进行简单的 *** 作,即可快速、低成本、低风险地开放数据或服务。

利用API网关你可以提高自己公司API安全性,也可以上架到API云市场,供用户购买和使用。

这个没什么可说的,主要是你要想办法尽可能安全地存储你的AppKey和AppSecrect。

所属分组是API的基本属性,所以需要先创建分组,再在分组下创建API。每个账号默认最多可创建100个分组,如需更多分组需要提交工单。分组有所属区域(Region)的概念,比如华东上海区,选择之后就不能修改了。创建完分组之后,系统会给该分组分配一个二级域名,供测试使用,不过,每个二级域名每天最多可访问1000次。

如果你的API支持>

作为软件应用而言,很多资源和数据不一定就是由其自身提供的,某些功能还是需要调用第三方提供的服务,这其中就涉及到API接口的调用。

什么是API接口?

API是指应用程序编程接口,我们通过API接口可以实现特定的功能,而不需要了解其内部实现细节。可以把API接口理解为是特定服务的一种封装,将服务封装起来提供给他人调用,这样一来很多功能不需要从新开发。

举个例子,我们想要知道一周天气如何,如果由自己来实现这个功能很难,因为天气数据只有气象部门才知道。那该如何知道天气信息呢?气象部分提供数据API给我们使用,我们只要输入地区就会知道该地区一周的天气情况,但我们并不需要了解这天气预报是如何实现的。

另外,不同系统和编程语言之间的数据通讯往往也采用API形式进行数据交接。

常见的API形式有哪些?

上面我们说到了,API其实就是一类服务的封装。我们可以使用不同的编程语言编写API,开发习惯和编程语言的不同导致API风格也存在差异。常见的API有以下几种形式:

1、>

基于>

2、RPC接口

RPC它是指远程过程调用,将一部分代码逻辑放在远程服务器上部署,然后在需要的地方调用即可(调用远程方法就像调用本地方法一样),本质上是Client/Server模式,而且支持多种协议和数据传输方式。

3、WebService接口

WebService并不具象地指某种API,我们将以WEB形式提供的服务都称之为WebService,像RESTful也属于WebService。

本文由Donny译自 3scalecom 的 《How to load test & tune performance on your API》
这几年API的作用不断演化,以前API还只是用来做内部系统之间的集成点,但现在API已成为一个公司的核心系统,一个构建于Web和移动端应用之上的核心系统。

当API仅只用来处理后台的任务(例如生成报告),那么性能差点也不是问题。但是如今API慢慢地发展成为连接服务与终端用户的核心纽带。这种关键性的角色变化表明了一个重要的观点:那就是API的性能真的很重要。

如果API数据源响应快,前端的应用程序的设计好点或差点影响不大,要是响应慢如蜗牛,前端的设计再出色也是然并卵。现在我们的客户端应用展示的数据源可能都是来自多个API响应内容的聚合,性能对这种微服务构架来说真的非常重要。

可以毫不夸张的说出色的性能就是你API提供的最好功能。我们知道向目标改进的唯一正确的方法就是找到问题的关键点,或者叫关键路径,并不断迭代测量和调整你的架构系统,直到系统达到预定的目标。对于API来说,测量和提高性能的过程就是负载与压力测试的过程。

本文将重点介绍如何对你的API进行负载压力测试。我们会以一个简单的、未测过的例子开始,然后再添加一个访问控制层,要确保一切都经过严格测试,做好处理真实流量的准备工作。OK,开始吧!
首先我们要明确要测试什么,可以是对你所有的API接口,或者是对单个API接口,或是对需要排除故障或改进的API接口的常规测试。
本文的其部分,我们将使用一个示例API。这是一个棋牌类游戏的Nodejs API。它有三个API接口:
/question – 返回一个随机黑牌

/answer – 返回一个随机白牌
/pick – 返回一对随机的问题与答案

你测试用的负荷情况越和真实环境的越类似,你的负载测试就越有用。如果你不知道实际流量有多少或者你不知道负载在所有接口上是否都一致,那么就算你知道你的API可以保持400 请求/秒的吞吐量也没啥鸟用。

所以,你应该先从收集你API的使用数据开始。你可以直接从你的API服务日志或者从其他你在用的应用性能工具(例如New Relic)中获取数据。在对你的API进行第一次测试之前,你应该对以下问题做到心中有数:
(1)每秒请求数的平均吞吐量(Average throughput in requests per second)

(2)峰值吞吐量(您在某段时间内获得的最大流量是多少?)(Peak throughput)

(3)API各接口的吞吐量分布情况(有没有一些接口的流量远超其他接口?)

(4)用户的吞吐量分布情况(少数用户产生大多数的流量,或者是更均匀分布?)

另外还需要考虑的一个关键点是,在测试期间将要模拟的流量会是怎样的,主要考虑点是:

(1)重复负载生成(Repetitive load generation)

(2)模拟流量模式

(3)真实流量

通常我们最好以最简单的方法开始测试,然后逐步演化到更为接近真实环境的测试。我们可以先用重复负载生成来做为API接口的第一个测试,这样不仅可以验证我们的测试环境是否稳定,更重要的是可以让我们找到API能承受的最大吞吐量,这样我们就可以知道API可以达到的性能上限是多少。

找到你的API性能上限值后,你就可以开始考虑如何将你的生成的测试流量塑造得更接近真实环境。使用真实流量来测试是最理想的,但实际 *** 作不太可行。要模拟真实流量比较难,也太花时间。所以我们有一个折中点的方法:先研究你的流量分析数据,并做一个简单的概率模拟。比如你有100个API接口(提示:原文endpoint在这里我译为接口,翻译成端点也可以,不过译成接口感觉更容易理解),你检查了上个月的使用情况,发现80%的流量来自20个接口,其中3个接口占用了50%的流量。那么你就可以创建一个遵循这种概率的请求列表,并提供给你的负载测试工具。这样做就相对快多了,并且它相对比较接近你真实负载,可以显示出你实际环境中可能遇到的问题。

最后,如果你拿到你要测试的API的真实访问日志,你就可以用它们来做最接近客观现实的测试。我们待会儿要讨论的大部分负载测试工具,都是接收一个请求列表作为输入文件。你可以用你的访问日志,稍微做一个格式调整就可以匹配每个测试工具所需的格式。搞定这个你就可以在测试环境中轻松重现你的生产流量。
好了,你清楚了你要测试什么鬼了,准备工作的最后一步就是配置好你的测试环境。你需要一个专用的测试环境。如果你不怕被你老板骂的话,或者比较任性,你也可以直接在你的生产环境中进行性能测试,不过出问题别说哥事先没跟你说清楚哈。

如果您已经设好一个预生产或沙箱环境,并且你的API也在上面运行了,那么你就万事俱备了。因为本文要用示例API,我们会在AWS的服务实例上设置我们的环境。

在我们的例子中,我们使用一个简单的API,不需要从磁盘读取或在内存中保存大型数据集。我们选择Linux C4large 实例就够了。

注意:我们对比过其他相似处理资源数但内存更大的AWS实例,但实际测试中内存大部分没使用,所以我们选了C4large

接下来,我们将一个配好的负载测试实例(服务器)运行起来,这只是一个运行模拟测试程序的服务器,它会通过从多个并发连接重复发送请求到我们的API服务器。你需要模拟的负载越高,机器的性能就要求越高。再次,这也是一个CPU密集型工作负载。这里我们选择具有4个虚拟核,16个 ECU的优化处理器的 c4xlarge AWS服务器

我们选择在相同的可用区内部署所有实例(API服务器与测试服务器在同一个区/机房),这样可以将外部因素对我们测试结果的影响降到最小。
我们有一个沙箱环境来运行我们的API,同时也有另一台服务器准备开始负载测试。如果这是你第一次做性能测试,你一定会想知道什么是最好的方法。在本节中,我们将会分享我们如何选择工具,同时也会介绍一下目前市面上一些公认比较好的工具。

JMeter

在人们意识当中,首当翘楚的估计是 Apache JMeter ,这是一个开源的Java程序,他关键的特性就是提供一个强大而完善的创建测试计划的GUI。测试计划由测试组件组成,测试组件定义了测试的每一个部分,例如:

(1)用来注入负载测试的线程
(2)参数化测试中使用的>应用程序接口(API 接口)是一组定义、程序及协议的集合,通过 API 接口实现计算机软件之间的相互通信。API 的一个主要功能是提供通用功能集。程序员通过使用 API 函数开发应用程序,从而可以避免编写无用程序,以减轻编程任务。在云服务器中,如果你熟悉网络服务协议和一种以上编程语言,可以使用云服务器 API 管理云上资源和开发自己的应用程序。一般能创建的云服务器实例、磁盘、安全组、快照和实例公网带宽流量等资源,云服务商均有数量和规格限制。关于云服务器api接口的入门使用1通过使用创建实例 API,提供可用区ID、镜像ID、机型参数等一些必要的信息,即可立开发云主机域名刻创建按量计费的实例。2如需修改配置,可以使用调整实例配置 API 调整为更高的配置。通过调整实例的机型开发云主机域名来实现CPU和内存的变更。如需关闭,可以使用关闭实例 API。3在不使用此云服务器时,使用退还实例 API 销毁它。


欢迎分享,转载请注明来源:内存溢出

原文地址:https://54852.com/zz/12598930.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2025-08-26
下一篇2025-08-26

发表评论

登录后才能评论

评论列表(0条)

    保存