
自适应过程是一个不断逼近目标的过程。它所遵循的途径以数学模型表示,称为自适应算法。通常采用基于梯度的算法,其中最小均方误差算法(即LMS算法)尤为常用。自适应算法可以用硬件(处理电路)或软件(程序控制)两种办法实现。前者依据算法的数学模型设计电路,后者则将算法的数学模型编制成程序并用计算机实现。算法有很多种,它的选择很重要,它决定处理系统的性能质量和可行性。
自适应均衡器的原理就是按照某种准则和算法对其系数进行调整最终使自适应均衡器的代价(目标)函数最小化,达到最佳均衡的目的。而各种调整系数的算法就称为自适应算法,自适应算法是根据某个最优准则来设计的。最常用的自适应算法有迫零算法,最陡下降算法,LMS算法,RLS算法以及各种盲均衡算法等。在理论上证明了对于任何统计特性的噪声干扰,VLMS算法优于LMS算法。
自适应算法所采用的最优准则有最小均方误差(LMS)准则,最小二乘(LS)准则、最大信噪比准则和统计检测准则等,其中最小均方误差(LMS)准则和最小二乘(LS)准则是目前最为流行的自适应算法准则。由此可见LMS算法和RLS算法由于采用的最优准则不同,因此这两种算法在性能,复杂度等方面均有许多差别。
MATLAB 信号处理常用函数
一、 波形产生
函数名 功能
sawtooth 产生锯齿波或三角波Sinc 产生sinc或函数sin(pit)/(pit)
Square 产生方波
Diric 产生Dirichlet或周期sinc函数
二、 滤波器分析和实现
函数名 功能
Abs 求绝对值(幅值)Freqs 模拟滤波器频率响应
Angle 求相角
Freqspace 频率响应中的频率间隔
Conv 求卷积
Freqz 数字滤波器频率响应
Fftfilt 重叠相加法FFT滤波器实现
Grpdelay 平均滤波器延迟(群延迟)
Filter 直接滤波器实现
Impz 数字滤波器的冲激响应
Filtfilt 零相位数字滤波
Zplane 离散系统零极点图
Filtie Filter 函数初始条件选择
三、 线性系统变换
函数名 功能
Convmtx 卷积矩阵Ss2tf 变系统状态空间形式为传递函数形式
Ploy2rc 从多项式系数中计算反射系数
Ss2zp 变系统状态空间形式为零极点增益形式
Rc2ploy 从反射系数中计算多项式系数
Tf2ss 变系统传递函数形式为状态空间形式
Residuez Z变换部分分式展开或留数计算
Tf2zp 变系统传递函数形式为零极点增益形式
Sos2ss 变系统二阶分割形式为状态空间形式
Zp2sos 变系统零极点形式为二阶分割形式
Sos2zp 变系统二阶分割形式为零极点增益形式
Zp2tf 变系统零极点增益形式为传递函数形式
Ss2sos 变系统状态空间形式为二阶分割形式
四、 IIR滤波器设计
Besself Bessel(贝塞尔)模拟滤波器设计Cheby2 Chebyshev(切比雪夫)II型模拟滤波器设计
Butter Butterworth(巴特沃思)模拟滤波器设计
Ellip 椭圆模拟滤波器设计
Cheby1 Chebyshev(切比雪夫)I 型模拟滤波器设计
Yulewalk 递归数字滤波器设计
五、 IIR滤波器阶选择
Buttord Butterworth(巴特沃思)滤波器阶的选择Cheb2ord Chebyshev(切比雪夫)II型滤波器阶的选择
Ehebord Chebyshev(切比雪夫)I 型滤波器阶的选择
Clipord 椭圆滤波器设计阶的选择 模拟原型滤波器设计
Besselap Bessel模拟低通滤波器原型
Cheb2ap Chebyshev(切比雪夫)II型低通滤波器原型
Buttap Butterworth(巴特沃思)模拟低通滤波器原型
Ellipap 椭圆模拟低通滤波器原型
Cheb1ap Chebyshev(切比雪夫)I 型低通滤波器原型
六、 频率变换
Lp2bp 低通到带通模拟滤波器转换Lp2bs 低通到带阻模拟滤波器变换
Lp2hp 低通到高通模拟滤波器变换
Lp2lp 低通到低通模拟滤波器转换
七、 滤波器离散化
Blinear 双线性变换Impinvar 冲激响应不变法
八、 FIR滤波器设计
Fir1 基于窗函数的 FIR 滤波器设计—标准响应Intfilt 内插FIR滤波器设计
Fir2 基于窗函数的 FIR 滤波器设计—任意响应
Remez Firls 最小二乘FIR滤波器设计
Remezord Parks-McCellan 最优 FIR 滤波器 j阶估计
九、 窗函数
Boxcar 矩形窗Hanning Hanning(汉宁)窗
Triang 三角窗
Blackman Blackman(布莱克曼)窗
Bartlett Bartlett(巴特得特)窗
Chebwin Chebyshev(切比雪夫)窗
Hamming Hamming(汉明)窗
Kaiser Kaiser(凯泽)窗
十、 变换
Ctz 线性调频Z变换Fft 一维快速傅里叶变换
Dct 离散余弦变换
Ifft 一维快速傅里叶逆变换
Idct 逆离散余弦变换
Fftshift 重新排列 fft的输出
Dftmtx 离散傅里叶变换矩阵
Hilbert Hilbert(希尔伯特)变换
十一、 统计信号处理
Cov 协方差矩阵Psd 信号功率谱密度(PSD)估计
Xcov 互协方差函数估计
Tfe 从输入输出中估计传递函数
Corrcoef 相关系数矩阵
Periodogram 采用周期图法估计功率谱密度
Xcoor 互相关系数估计
Pwelch 采用 Welch方法估计功率谱密度
Cohere 相关函数平方幅值估计
Rand 生成均匀分布的随机数
Csd 互谱密度估计
Randn 生成正态分布的随机数
十二、 自适应滤波器部分
Adaptfiltlms 最小均方(LMS)自适应算法Adaptfiltrls 递推最小二乘(RLS)自适应算法
Adaptfiltnlms 归一化最小均方(NLMS)自适应算法
十三、 时频分析与小波变换部分
Spectrogram 短时傅里叶变换Idwt 单级离散一维小波逆变换
Waveinfo 介绍小波工具箱中所有小波的信息
Wavedec 多级离散一维小波分解
Cwt 连续一维小波变换
Appcoef 一维小波变换近似系数
Dwt 单级离散一维小波变换
Detcoef 一维小波变换细节系数
十四、 二维信号处理
Conv2 二维卷积Xcorr2 二维互相关参数
Fft2 二维快读傅里叶变换
Dwt2 单级离散二维小波变换
Ifft2 二维逆快速傅里叶变换
Idwt2 单级离散二维小波逆变换
Filter2 二维数字滤波器
Waverec2 多级离散二维小波分解
“递归最小二次方算法”——RLS算法,其又称最小二乘法。
在我们研究两个变量(x,
y)之间的相互关系时,通常可以得到一系列成对的数据
(x1,
y1、x2,
y2
xm
,
ym);
将这些数据描绘在x
-y直角坐标系中
若发现这些点在一条直线附近,
可以令这条直线方程如(式1-1)。
Y计=
a0
+
a1
X
(式1-1)
其中:a0、a1
是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,
将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差
(Yi-Y计)的平方和〔∑(Yi
-
Y计)2〕最小为“优化判据”。
令:
φ
=
∑(Yi
-
Y计)2
(式1-2)
把(式1-1)代入(式1-2)中得:
φ
=
∑(Yi
-
a0
-
a1
Xi)2
(式1-3)
当∑(Yi-Y计)平方最小时,可用函数
φ
对a0、a1求偏导数,令这两个偏导数等于零。
亦即:
m
a0
+
(∑Xi
)
a1
=
∑Yi
(∑Xi
)
a0
+
(∑Xi2
)
a1
=
∑(Xi,
Yi)
得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:
a0
=
(∑Yi)
/
m
-
a1(∑Xi)
/
m
a1
=
[∑Xi
Yi
-
(∑Xi
∑Yi)/
m]
/
[∑Xi2
-
(∑Xi)2
/
m)]
这时把a0、a1代入(式1-1)中,
此时的(式1-1)
就是我们回归的元线性方程即:数学模型。
以上就是关于自适应算法的简介全部的内容,包括:自适应算法的简介、matlab在信号系统的常用函数、RLS算法的原理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)